Xavier Dupuis

Xavier Dupuis

PhD in Applied Mathematics


Maître de conférences

Institut de Mathématiques de Bourgogne
Université de Bourgogne
9, avenue Alain Savary
21000 Dijon, France

xavier.dupuis at u-bourgogne.fr
+33 3 80 39 58 32
bureau 329 (bâtiment Mirande, aile A, étage 3)

CV


Full CV
  • PhD in Applied Mathematics (Ecole Polytechnique), 2013.
  • Master's degree in Mathematics (Ecole Normale Supérieure de Lyon), 2010.
  • Agrégation de Mathématiques, 2009.

Research interests


  • Optimization, numerical methods, machine learning
  • Optimal control in finite and infinite dimensional settings
  • Applications and modelling in economics, biology, medicine

Publications


  • M. Bogdan, X. Dupuis, P. Graczyk, B. Kołodziejek, T. Skalski, P. Tardivel, M. Wilczyński. Pattern recovery by SLOPE. arXiv:2203.12086, 2022. link, preprint

  • X. Dupuis, P. Tardivel. Proximal operator for the sorted l1 norm: Application to testing procedures based on SLOPE. J. Statist. Plann. Inference 221, 1-8, 2022. link, article

  • E. Calzola, E. Carlini, X. Dupuis, F.J. Silva. A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations with oblique boundary conditions. arXiv:2109.10228, 2021. link, preprint

  • X. Dupuis, S. Vaiter. The Geometry of Sparse Analysis Regularization. arXiv:1907.01769, 2019. link, preprint

  • G. Carlier, X. Dupuis. An iterated projection approach to variational problems under generalized convexity constraints. Appl. Math. Optim., 76(3), 565-592, 2017. link, article

  • J-D. Benamou, X. Dupuis. Semi-discrete principal-agent problem. Jupyter Notebook, 2016. notebook (password: mokaplan), static version

  • J.F. Bonnans, X. Dupuis, L. Pfeiffer. Second-order necessary conditions in Pontryagin form for optimal control problems. SIAM J. Control Optim., 52(6):3887-3916, 2014. link, article

  • J.F. Bonnans, X. Dupuis, L. Pfeiffer. Second-order sufficient conditions for strong solutions to optimal control problems. ESAIM Control Optim. Calc. Var., 20(3):704-724, 2014. link, article

  • X. Dupuis. Optimal control of leukemic cell population dynamics. Math. Model. Nat. Phenom., 9(1):4-26, 2014. link, article

  • J.F. Bonnans, C. de la Vega, X. Dupuis. First and second order optimality conditions for optimal control problems of state constrained integral equations. J. Optim. Theory Appl., 159(1):1-40, 2013. link, article

PhD thesis


Optimal control of differential equations with - or without - memory. November 2013. link, manuscript