
J Optim Theory Appl (2013) 159:1–40
DOI 10.1007/s10957-013-0299-3

First- and Second-Order Optimality Conditions
for Optimal Control Problems of State Constrained
Integral Equations

J. Frédéric Bonnans · Constanza de la Vega ·
Xavier Dupuis

Received: 24 May 2012 / Accepted: 4 March 2013 / Published online: 21 March 2013
© Springer Science+Business Media New York 2013

Abstract This paper deals with optimal control problems of integral equations, with
initial–final and running state constraints. The order of a running state constraint is
defined in the setting of integral dynamics, and we work here with constraints of
arbitrary high orders. First-order necessary conditions of optimality are given by the
description of the set of Lagrange multipliers. Second-order necessary conditions are
expressed by the nonnegativity of the supremum of some quadratic forms. Second-
order sufficient conditions are also obtained in the case where these quadratic forms
are of Legendre type.

Keywords Optimal control · Integral equations · State constraints · Second-order
optimality conditions

1 Introduction

The dynamics in the optimal control problems we consider in this paper is given
by an integral equation. Such equations, sometimes called nonlinear Volterra integral
equations, belong to the family of equations with memory and thus are found in many
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models. Among the fields of application of these equations are population dynamics
in biology and growth theory in economy: see [1] or its translation in [2] for one of the
first use of integral equations in ecology in 1927 by Volterra, who contributed earlier
to their theoretical study [3]; in 1976, Kamien and Muller [4] modeled the capital
replacement problem by an optimal control problem with an integral state equation.
First-order optimality conditions for such problems were known under the form of
a maximum principle since Vinokurov’s paper [5] in 1967 (translated in 1969 [6–8]),
whose proof has been questioned by Neustadt and Warga [9] in 1970. Maximum
principles have then been provided by Bakke [10], Carlson [11], or more recently by
de la Vega [12] for an optimal terminal time control problem. First-order optimality
conditions for control problems of the more general family of equations with memory
are obtained by Carlier and Tahraoui [13].

None of the previously cited articles considers what we will call “running state
constraints.” That is what Bonnans and de la Vega did in [14], where they provide
Pontryagin’s principle, i.e., first-order optimality conditions. In this work we are par-
ticularly interested in second-order necessary conditions in presence of running state
constraints. Such constraints drive to optimization problems with inequality con-
straints in the infinite-dimensional space of continuous functions. Thus second-order
necessary conditions on a so-called critical cone will contain an extra term, as it has
been discovered in 1988 by Kawasaki [15] and generalized in 1990 by Cominetti [16]
in an abstract setting. It is possible to compute this extra term in the case of state con-
strained optimal control problems; this is done by Páles and Zeidan [17] and Bonnans
and Hermant [18, 19] in the framework of ODEs.

Our strategy here is different and follows [20], with the differences that we work
with integral equations and that we add initial–final state constraints that lead to
nonunique Lagrange multipliers. The idea was already present in [15] and is closely
related to the concept of extended polyhedricity [21]: the extra term mentioned above
vanishes if we write second-order necessary conditions on a subset of the critical
cone, the so-called radial critical cone. This motivates introducing an auxiliary op-
timization problem, the reduced problem, for which under some assumptions the ra-
dial critical cone is dense in the critical cone. Optimality conditions for the reduced
problem are relevant for the original problem, and the extra term now appears as the
derivative of a new constraint in the reduced problem. We will devote a lot of effort
to the proof of the density result, and we will mention a flaw in [20] concerning this
proof.

The paper is organized as follows. We set the optimal control problem, define
Lagrange multipliers, and work on the notion of order of a running state con-
straint in our setting in Sect. 2. The reduced problem is introduced in Sect. 3,
followed by first-order necessary conditions and second-order necessary condi-
tions on the radial critical cone. The main results are presented in Sect. 4. After
some specific assumptions, we state and prove the technical Lemma 4.1, which is
then used to strengthen the first-order necessary conditions already obtained and
to get the density result that we need. With this density result, we obtain second-
order necessary conditions on the critical cone. Second-order sufficient conditions
are also given in this section. Some of the technical aspects are postponed to
Appendix.
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Notations We denote by ht the value of a function h at time t if h depends only on t ,
and by hi,t its ith component if h is vector-valued. To avoid confusion, we denote
partial derivatives of a function h of (t, x) by Dth and Dxh, and we keep the symbol
D without any subscript for the differentiation w.r.t. all variables. We identify the
dual space of R

n with the space R
n∗ of n-dimensional horizontal vectors. Generally,

we denote by X∗ the dual space of a topological vector space X. We denote by | · |
both the Euclidean norm on finite-dimensional vector spaces and the cardinal of a
finite set, and by ‖ · ‖s and ‖ · ‖q,s the standard norms on the Lebesgue spaces Ls and
the Sobolev spaces Wq,s , respectively.

2 Optimal Control of State Constrained Integral Equations

2.1 Setting

We consider an optimal control problem with running and initial–final state con-
straints of the following type:

(P ) min
(u,y)∈U×Y

∫ T

0
�(ut , yt )dt + φ(y0, yT ) (1)

subject to yt = y0 +
∫ t

0
f (t, s, us, ys)ds, t ∈ [0, T ], (2)

g(yt ) ≤ 0, t ∈ [0, T ], (3)

ΦE(y0, yT ) = 0, (4)

ΦI (y0, yT ) ≤ 0, (5)

where

U := L∞([0, T ];R
m
)

and Y := W 1,∞([0, T ];R
n
)

are the control space and state space, respectively.
The data are � : R

m × R
n → R, φ : R

n × R
n → R, f : R × R × R

m × R
n → R

n,
g : R

n → R
r , ΦE : R

n × R
n → R

sE , ΦI : R
n × R

n → R
sI , and T > 0. We make the

following assumption:

(A0) �, φ, f , g, ΦE , ΦI are of class C∞, and f is Lipschitz.

Remark 2.1

1. We set τ as the symbol for the first variable of f . Observe that if Dτf ≡ 0, we
recover an optimal control problem of a state constrained ODE. More generally, if
Dd

τd f ≡ 0, then the integral equation (2) can be written as a system of controlled
differential equations by adding d − 1 state variables.

2. The running cost � and the running state constraints g appear in some applications
as functions of (t, u, y) and (t, y), respectively. It fits our framework if � and g

are of class C∞ w.r.t. all variables by adding a state variable, but the case where
they are not regular w.r.t. t is not treated here.
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We call a trajectory a pair (u, y) ∈ U × Y which satisfies the state equation (2).
Under assumption (A0) it can be shown by standard contraction arguments that for
any (u, y0) ∈ U × R

n, the state equation (2) has a unique solution y in Y , denoted by
y[u,y0]. Moreover, the map Γ : U × R

n → Y defined by Γ (u,y0) := y[u,y0] is of
class C∞.

2.2 Lagrange Multipliers

The dual space of the space of vector-valued continuous functions C([0, T ];R
r ) is

the space of finite vector-valued Radon measures M([0, T ];R
r∗) under the pairing

〈μ,h〉 :=
∫

[0,T ]
dμt ht =

∑
1≤i≤r

∫
[0,T ]

hi,t dμi,t.

We define BV([0, T ];R
n∗), the space of vector-valued functions of bounded varia-

tion, as follows: let I be an open set that contains [0, T ]; then

BV
([0, T ];R

n∗) := {h ∈ L1(I ;R
n∗) : Dh ∈ M

(
I ;R

n∗), supp(Dh) ⊂ [0, T ]},
where Dh is the distributional derivative of h; if h is of bounded variation, we denote
it by dh. For h ∈ BV([0, T ];R

n∗), there exist h0− , hT+ ∈ R
n∗ such that

h = h0− a.e. on ]−∞,0[ ∩ I,

h = hT+ a.e. on ]T ,+∞[ ∩ I.
(6)

Conversely, we can identify any measure μ ∈ M([0, T ];R
r∗) with the derivative of

a function of bounded variation, denoted again by μ, such that μT+ = 0. This moti-
vates the notation dμ for any measure in the sequel, setting implicitly μT+ = 0. See
Appendix A.1 for more details.

Let

M := M
([0, T ];R

r∗), P := BV
([0, T ];R

n∗).
For p ∈ P, we define the Hamiltonian H [p] : R × R

m × R
n → R by

H [p](t, u, y) := �(u, y) + ptf (t, t, u, y) +
∫ T

t

psDτf (s, t, u, y)ds (7)

and, for Ψ ∈ R
s∗, the end points Lagrangian Φ[Ψ ] : R

n × R
n → R by

Φ[Ψ ](y1, y2) := φ(y1, y2) + Ψ Φ(y1, y2), (8)

where s := sE + sI and Φ := (ΦE,ΦI ). We also denote K := {0}sE × R
sI− , so that

(4)–(5) can be rewritten as Φ(y0, yT ) ∈ K . The normal cone to K at a point Φ̄ ,
denoted by NK(Φ̄) and defined as the polar cone of the tangent cone TK(Φ̄), has
here the following characterization: Ψ ∈ NK(Φ̄) iff

Φ̄ ∈ K, Ψi ≥ 0, ΨiΦ̄i = 0, i = sE + 1, . . . , sE + sI . (9)
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Given a trajectory (u, y) and (dη,Ψ ) ∈ M × R
s∗, the adjoint state p, whenever it

exists, is defined as the solution in P of

{
−dpt = DyH [p](t, ut , yt )dt + dηtg

′(yt ),

(−p0− ,pT+) = DΦ[Ψ ](y0, yT ).
(10)

Note that dηt g
′(yt ) =∑r

i=1 dηi,t g
′
i (yt ). The adjoint state does not exist in general,

but when it does, it is unique. More precisely, we have the following:

Lemma 2.1 There exists a unique solution in P of the adjoint state equation with
final condition only (i.e., without initial condition):

{
−dpt = DyH [p](t, ut , yt )dt + dηt g

′(yt ),

pT+ = Dy2Φ[Ψ ](y0, yT ).
(11)

Proof The contraction argument is given in Appendix A.1. �

We can now define Lagrange multipliers for optimal control problems in our set-
ting:

Definition 2.1 The triple (dη,Ψ,p) ∈ M × R
s∗ × P is a Lagrange multiplier associ-

ated with (ū, ȳ) iff

p is the adjoint state associated with (ū, ȳ,dη,Ψ ), (12)

dη ≥ 0, g(ȳ) ≤ 0,

∫
[0,T ]

dηt g(ȳt ) = 0, (13)

Ψ ∈ NK

(
Φ(ȳ0, ȳT )

)
, (14)

DuH [p](t, ūt , ȳt ) = 0 for a.a. t ∈ [0, T ]. (15)

2.3 Linearized State Equation

For s ∈ [1,∞], let

Vs := Ls
([0, T ];R

m
)
, Zs := W 1,s

([0, T ];R
n
)
.

Given a trajectory (u, y) and (v, z0) ∈ Vs ×R
n, we consider the linearized state equa-

tion in Zs

zt = z0 +
∫ t

0
D(u,y)f (t, s, us, ys)(vs, zs)ds. (16)

It is easily shown that there exists a unique solution z ∈ Zs of (16), called the lin-
earized state associated with the trajectory (u, y) and direction (v, z0) and denoted
by z[v, z0] (keeping in mind the nominal trajectory).
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Lemma 2.2 There exist C > 0 and Cs > 0 for any s ∈ [1,∞] (depending on (u, y))
such that, for all (v, z0) ∈ Vs × R

n and all t ∈ [0, T ],
∣∣z[v, z0]t

∣∣≤ C

(
|z0| +

∫ t

0
|vs |ds

)
, (17)

∥∥z[v, z0]
∥∥

1,s
≤ Cs

(|z0| + ‖v‖s

)
. (18)

Proof of Eq. (17) comes from Gronwall’s lemma, and (18) follows from (17). �

For s = ∞, the linearized state equation arises naturally: let (u, y0) ∈ U × R
n and

y := Γ (u,y0) ∈ Y . We consider the linearized state associated with the trajectory
(u, y) and a direction (v, z0) ∈ U × R

n. Then

z[v, z0] = DΓ (u,y0)(v, z0). (19)

Similarly, we can define the second-order linearized state z2[v, z0] as the unique
solution in Zs/2 of

z2
t =

∫ t

0

(
Dyf (t, s, us, ys)z

2
s + D2

(u,y)2f (t, s, us, ys)
(
vs, z[v, z0]s

)2)ds (20)

for (v, z0) ∈ Vs × R
n and s ∈ [2,∞]. If s = ∞, then

z2[v, z0] = D2Γ (u,y0)(v, z0)
2. (21)

2.4 Running State Constraints

The running state constraints gi , i = 1, . . . , r , are considered along trajectories (u, y).
They produce functions of one variable, t �→ gi(yt ), which belong to W 1,∞([0, T ])
a priori and satisfy

d

dt
gi(yt ) = g′

i (yt )

(
f (t, t, ut , yt ) +

∫ t

0
Dτf (t, s, us, ys)ds

)
. (22)

There are two parts in this derivative:

• t �→ g′
i (yt )f (t, t, ut , yt ), where u appears pointwise.

• t �→ g′
i (yt )

∫ t

0 Dτf (t, s, us, ys)ds, where u appears in an integral.

Below we will distinguish these two behaviors and set ũ as the symbol for the point-
wise variable, u for the integral variable (similarly for y). If there is no dependance
on ũ, one can again differentiate (22) w.r.t. t . This motivates the definition of a notion
of total derivative that always “forgets” the dependence on ũ. Let us do that formally.

First, we need a set which is stable under operations such as in (22), so that it will
contain the derivatives of any order. It is also of interest to know how the functions
we consider depend on (u, y) ∈ U × Y . To answer this double issue, we define the
following commutative ring:

S :=
{
h : h(t, ũ, ỹ, u, y) =

∑
α

aα(t, ũ, ỹ)
∏
β

∫ t

0
bα,β(t, s, us, ys)ds

}
, (23)
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where (t, ũ, ỹ, u, y) ∈ R × R
m × R

n × U × Y , aα and bα,β are real functions of
class C∞, the sum and the products are finite, and an empty product is equal to 1.
The following is straightforward:

Lemma 2.3 Let h ∈ S, (u, y) ∈ U × Y . There exists C > 0 such that, for a.a.
t ∈ [0, T ] and for all (ṽ, z̃, v, z) ∈ R

m × R
n × U × Y ,

∣∣D(ũ,ỹ,u,y)h(t, ut , yt , u, y)(ṽ, z̃, v, z)
∣∣≤ C

(
|ṽ| + |z̃| +

∫ t

0

(|vs | + |zs |
)

ds

)
.

Next, we define the derivation D(1) : S −→ S as follows (recall that we set τ as the
symbol for the first variable of f or b):

1. For h : (t, ũ, ỹ) ∈ R × R
m × R

n �→ a(t, ũ, ỹ) ∈ R,
(
D(1)h

)
(t, ũ, ỹ, u, y)

:= Dta(t, ũ, ỹ) + Dỹa(t, ũ, ỹ)

(
f (t, t, ũ, ỹ) +

∫ t

0
Dτf (t, s, us, ys)ds

)
.

2. For h : (t, u, y) ∈ R × U × Y �→ ∫ t

0 b(t, s, us, ys)ds ∈ R,

(
D(1)h

)
(t, ũ, ỹ, u, y) := b(t, t, ũ, ỹ) +

∫ t

0
Dτb(t, s, us, ys)ds.

3. For any h1, h2 ∈ S,
(
D(1)(h1 + h2)

) = (D(1)h1
)+ (D(1)h2

)
,

(
D(1)(h1h2)

) = (D(1)h1
)
h2 + h1

(
D(1)h2

)
.

It is clear that D(1)h ∈ S for any h ∈ S. The following formula, which is easily
checked for h = a(t, ũ, ỹ) and h = ∫ t

0 b(t, s, us, ys)ds, will be used for any h ∈ S:

(
D(1)h

)
(t, ut , yt , u, y) = Dth(t, ut , yt , u, y) + Dỹh(t, ut , yt , u, y)f (t, t, ut , yt )

+ Dỹh(t, ut , yt , u, y)

∫ t

0
Dτf (t, s, us, ys)ds. (24)

Let us now highlight two important properties of D(1). First, it is a notion of total
derivative:

Lemma 2.4 Let h ∈ S be such that Dũh ≡ 0, (u, y) ∈ U × Y be a trajectory, and

ϕ : t �→ h(t, ut , yt , u, y). (25)

Then ϕ ∈ W 1,∞([0, T ]), and

dϕ

dt
(t) = (D(1)h

)
(t, ut , yt , u, y). (26)
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Proof We write h as in (23). If Dũh ≡ 0, then for any u0 ∈ R
m,

ϕ(t) = h(t, u0, yt , u, y) (27)

=
∑
α

aα(t, u0, yt )
∏
β

∫ t

0
bα,β(t, s, us, ys)ds. (28)

By (28), ϕ ∈ W 1,∞([0, T ]), and, by (27),

dϕ

dt
(t) = Dth(t, u0, yt , u, y) + Dỹh(t, u0, yt , u, y)ẏt

= Dth(t, ut , yt , u, y) + Dỹh(t, ut , yt , u, y)ẏt

since DũDth ≡ DtDũh ≡ 0 and DũDỹh ≡ 0. Using the expression of ẏt and (24),
we recognize (26). �

Second, it satisfies a principle of commutation with the linearization:

Lemma 2.5 Let h and (u, y) be as in Lemma 2.4. Let s ∈ [1,∞], (v, z0) ∈ Vs × R
n,

z := z[v, z0] ∈ Zs , and

ψ : t �→ D(ỹ,u,y)h(t, ut , yt , u, y)(zt , v, z). (29)

Then ψ ∈ W 1,s([0, T ]), and

dψ

dt
(t) = D(ũ,ỹ,u,y)

[(
D(1)h

)
(t, ut , yt , u, y)

]
(vt , zt , v, z). (30)

Proof Using DũD(ỹ,u,y)h ≡ 0, we have

ψ(t) = D(ỹ,u,y)h(t, u0, yt , u, y)(zt , v, z)

=
∑
α

Dỹaα(t, u0, yt )zt

∏
β

∫ t

0
bα,β ds

+
∑
α,β

aα(t, u0, yt )

∫ t

0
D(u,y)bα,β(t, s, us, ys)(vs, zs)ds

∏
β ′ �=β

∫ t

0
bα,β ′ ds.

This implies that ψ ∈ W 1,s([0, T ]) and that

dψ

dt
(t) = D2

t,(ỹ,u,y)h(t, ut , yt , u, y)(zt , v, z)

+ D2
ỹ,(ỹ,u,y)h(t, ut , yt , u, y)

(
ẏt , (zt , v, z)

)+ Dỹh(t, ut , yt , u, y)żt .

On the other hand, we differentiate D(1)h w.r.t. (ũ, ỹ, u, y) using (24). Then with the
expressions of ẏt and żt , we get relation (30). �

The same principle is true at the second-order:
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Lemma 2.6 Let h and (u, y) be as in Lemma 2.4. Let s ∈ [2,∞], (v, z0) ∈ Vs × R
n,

z := z[v, z0],∈ Zs , z2 := z2[v, z0] ∈ Zs/2, and

φ : t �→ D2
(ỹ,u,y)2h(t, ut , yt , u, y)(zt , v, z)2 + D(ỹ,y)h(t, ut , yt , u, y)

(
z2
t , z

2). (31)

Then φ ∈ W 1,s/2([0, T ]), and

dφ

dt
(t) = D2

(ũ,ỹ,u,y)2

[(
D(1)h

)
(t, ut , yt , u, y)

]
(vt , zt , v, z)2

+ D(ỹ,y)

[(
D(1)h

)
(t, ut , yt , u, y)

](
z2
t , z

2). (32)

Proof We apply the definitions and the results of this section to a problem where the
control variables are (u, v), the state variables are (y, z), and the dynamics is given
by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

yt = y0 +
∫ t

0
f (t, s, us, ys)ds,

zt = z0 +
∫ t

0
D(u,y)f (t, s, us, ys)(vs, zs)ds.

(33)

Note that the linearized dynamics at (u, v, y, z) in the direction (v,0, z0,0) is given
by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zt = z0 +
∫ t

0
Du,y)f (t, s, us, ys)(vs, zs)ds,

z2
t =

∫ t

0

(
Dyf (t, s, us, ys)z

2
s + D2(u, y)2f (t, s, us, ys)(vs, zs)

2)ds.

(34)

Let H be defined by

H(t, ũ, ṽ, ỹ, z̃, u, v, y, z) := D(ũ,ỹ,u,y)h(t, ũ, ỹ, u, y)(ṽ, z̃, v, z). (35)

If Dũh ≡ 0, then D(ũ,ṽ)H ≡ 0, and

D(ỹ,z̃,u,v,y,z)H(t, ut , vt , yt , zt , u, v, y, z)
(
zt , z

2
t , v,0, z, z2)

= D2
(ỹ,u,y)2h(t, ut , yt , u, y)(zt , v, z)2 + D(ỹ,y)h(t, ut , yt , u, y)

(
z2
t , z

2). (36)

By Lemma 2.5, the time derivative of this function is

D(ũ,ṽ,ỹ,z̃,u,v,y,z)

[(
D(1)H

)
(t, ut , vt , yt , zt , u, v, y, z)

](
vt ,0, zt , z

2
t , v,0, z, z2), (37)

and by Lemma 2.4, the definition of H , and Lemma 2.5 again, we get successively

(
D(1)H

)
(t, ut , vt , yt , zt , u, v, y, z)

= d

dt
H(t, ut , vt , yt , zt , u, v, y, z),
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= d

dt
D(ỹ,u,y)h(t, ut , yt , u, y)(zt , v, z),

= D(ũ,ỹ,u,y)

[(
D(1)h

)
(t, ut , yt , u, y)

]
(vt , zt , v, z). (38)

Then Eq. (37) becomes

D2
(ũ,ỹ,u,y)2

[(
D(1)h

)
(t, ut , yt , u, y)

]
(vt , zt , v, z)2

+ D(ỹ,y)

[(
D(1)h

)
(t, ut , yt , u, y)

](
z2
t , z

2), (39)

and Lemma 2.6 is proved. �

Finally, we define the order of a running state constraint gi . Let g
(0)
i := gi and

g
(j+1)
i := D(1)g

(j)
i . Note that gi ∈ S, so g

(j)
i ∈ S for all j ≥ 0. Moreover, if we write

g
(j)
i as in (23), the aα and bα,β are combinations of derivatives of f and gi .

Definition 2.2 The order of the constraint gi is the greatest positive integer qi such
that

Dũg
(j)
i ≡ 0 for all j = 0, . . . , qi − 1.

We have a result similar to Lemma 9 in [18], but now for integral dynamics
and up to the second-order. Let (u, y) ∈ U × Y be a trajectory, (v, z0) ∈ Vs × R

n,
z := z[v, z0] ∈ Zs , and z2 := z2[v, z0] ∈ Zs/2 for some s ∈ [2,∞].
Lemma 2.7 Let gi be of order at least qi ∈ N. Then

t �→ gi(yt ) ∈ Wqi,∞([0, T ]), (40)

t �→ g′
i (yt )zt ∈ Wqi,s

([0, T ]), (41)

t �→ g′′
i (yt )(zt )

2 + g′
i (yt )z

2
t ∈ Wqi,s/2([0, T ]), (42)

and for j = 1, . . . , qi ,

dj

dtj
gi(y)

∣∣∣∣
t

= g
(j)
i (t, ut , yt , u, y), (43)

dj

dtj
g′

i (y)z

∣∣∣∣
t

= D(ũ,ỹ,u,y)g
(j)
i (t, ut , yt , u, y)(vt , zt , v, z), (44)

dj

dtj

(
g′′

i (yt )(zt )
2 + g′

i (yt )z
2
t

)∣∣∣∣
t

= D2
(ũ,ỹ,u,y)2g

(j)
i (t, ut , yt , u, y)(vt , zt , v, z)2

+ D(ỹ,y)g
(j)
i (t, ut , yt , u, y)

(
z2
t , z

2). (45)

Proof The result follows from Lemmas 2.4, 2.5, 2.6, by induction on j . Observe in
particular that by Definition 2.2, formulas (43)–(45) depend neither on ut nor on vt

for j = 1, . . . , qi − 1. �
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Example 2.1

1. The classical example of a state constraint of order q is yt ≤ 0 for all t ∈ [0, T ]
where y

(q)
t = ut for a.a. t ∈ (0, T ). This higher-order controlled differential equa-

tion can be written as a system of controlled differential equations, and the notion
of order of state constraints for ODEs applies. It is interesting to note that this
equation can be reduced to the following scalar integral equation:

yt =
∫ t

0

(t − s)q−1

(q − 1)! us ds, t ∈ [0, T ]. (46)

Then the constraint yt ≤ 0 for all t ∈ [0, T ] gives

g(0)(t, ũ, ỹ, u, y) = ỹ, (47)

g(j)(t, ũ, ỹ, u, y) =
∫ t

0

(t − s)q−1−j

(q − 1 − j)! us ds, j = 1, . . . , q − 1, (48)

g(q)(t, ũ, ỹ, u, y) = ũ. (49)

Thus, we find again that the constraint is of order q .
2. We consider the following variant of the previous example:

yt =
∫ t

0

(t − s)q−1

(q − 1)! f (t, s)us ds, t ∈ [0, T ]. (50)

If f is not polynomial in t , then this integral equation cannot be in general reduced
to a system of ODEs (see Remark 2.1.1), and the constraint yt ≤ 0 for all t ∈ [0, T ]
is still of order q .

3 Weak Results

3.1 A First Abstract Formulation

The optimal control problem (P ) can be rewritten as an abstract optimization problem
on (u, y0). The most naive way to do that is the following equivalent formulation:

(P ) min
(u,y0)∈U×Rn

J (u, y0) (51)

subject to g
(
y[u,y0]

) ∈ C
([0, T ];R

r−
)
, (52)

Φ
(
y0, y[u,y0]T

) ∈ K, (53)

where

J (u, y0) :=
∫ T

0
�
(
ut , y[u,y0]t

)
dt + φ

(
y0, y[u,y0]T

)
, (54)
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and Φ = (ΦE,ΦI ), K = {0}sE × R
sI− . In order to write optimality conditions for this

problem, we first compute its Lagrangian

L(u,y0,dη,Ψ ) := J (u, y0) +
∫

[0,T ]
dηt g

(
y[u,y0]t

)+ Ψ Φ
(
y0, y[u,y0]T

)
, (55)

where (u, y0,dη,Ψ ) ∈ U × R
n × M × R

s∗ (see the beginning of Sect. 2.2). A La-
grange multiplier at (u, y0) in this setting is any (dη,Ψ ) such that

D(u,y0)L(u, y0,dη,Ψ ) ≡ 0, (56)

(dη,Ψ ) ∈ NC([0,T ];Rr−)×K

(
g(y),Φ(y0, yT )

)
, (57)

where NC([0,T ];Rr−)×K(g(y),Φ(y0, yT )) is the normal cone to C([0, T ];R
r−) × K at

(g(y),Φ(y0, yT )). We have the following characterization:

(dη,Ψ ) ∈ NC([0,T ];Rr−)×K

(
g(y),Φ(y0, yT )

)
(58)

iff

gi(y) ≤ 0, dηi ≥ 0,

∫ T

0
gi(yt )dηi,t = 0, i = 1, . . . , r,

Ψ ∈ NK

(
Φ(y0, yT )

)
(see (9)).

(59)

Definition (56)–(57) has to be compared to Definition 2.1:

Lemma 3.1 The couple (dη,Ψ ) is a Lagrange multiplier of the abstract problem
(51)–(53) at (ū, ȳ0) iff (dη,Ψ,p) is a Lagrange multiplier of the optimal control
problem (1)–(5) associated with (ū, y[ū, ȳ0]), where p is the unique solution of (11).

Proof Using the Hamiltonian (7) and the end-point Lagrangian (8), we have

L(u,y0,dη,Ψ ) =
∫ T

0
H [p](t, ut , yt )dt +

∫
[0,T ]

dηt g(yt ) + Φ[Ψ ](y0, yT )

−
∫ T

0

(
ptf (t, t, ut , yt ) +

∫ T

t

psDτf (s, t, ut , yt )ds

)
dt (60)

for y = y[u,y0] and any p ∈ P. Moreover,

∫ T

0

(
ptf (t, t, ut , yt ) +

∫ T

t

psDτf (s, t, ut , yt )ds

)
dt

=
∫ T

0
pt

(
f (t, t, ut , yt ) +

∫ t

0
Dτf (t, s, us, ys)ds

)
dt

=
∫

[0,T ]
pt ẏt dt = −

∫
[0,T ]

dptyt + pT+yT − p0−y0 (61)
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by the formula of integration by parts (156) of the Appendix A.1. Then

L(u,y0,dη,Ψ ) =
∫ T

0
H [p](t, ut , yt )dt +

∫
[0,T ]

(
dptyt + dηt g(yt )

)

+ p0−y0 − pT+yT + Φ[Ψ ](y0, yT )

for any p ∈ P. We fix (ū, ȳ0,dη,Ψ ), differentiate L w.r.t. (u, y0) at this point, and
choose p as the unique solution of (11). Then

D(u,y0)L(ū, ȳ0,dη,Ψ )(v, z0) =
∫ T

0
DuH [p](t, ūt , ȳt )vt dt

+ (p0− + Dy1Φ[Ψ ](ȳ0, ȳT )
)
z0

for all (v, z0) ∈ U×R
n. It follows that (56) is equivalent to (12) and (15). It is obvious

that (57) is equivalent to (13)–(14). �

Second, we need a qualification condition.

Definition 3.1 We say that (ū, ȳ) is qualified iff

1.

{
(v, z0) �→ DΦE(ȳ0, ȳT )(z0, z[v, z0]T )

U × R
n → R

sE
is onto,

2. there exists (v̄, z̄0) ∈ U × R
n such that, with z̄ = z[v̄, z̄0],

⎧⎪⎪⎨
⎪⎪⎩

DΦE(ȳ0, ȳT )(z̄0, z̄T ) = 0,

DΦI
i (ȳ0, ȳT )(z̄0, z̄T ) < 0, i ∈ {i : ΦI

i (ȳ0, ȳT ) = 0
}
,

g′
i (ȳt )z̄t < 0 on {t : gi(ȳt ) = 0}, i = 1, . . . , r.

Remark 3.1

1. This condition is equivalent to Robinson’s constraint qualification (introduced in
[22], Definition 2) for the abstract problem (51)–(53) at (ū, ȳ0); see the discussion
that follows Definition 3.4 and Definition 3.5 in [15] for a proof of the equivalence.

2. It is sometimes possible to give optimality conditions without qualification con-
dition by considering an auxiliary optimization problem (see, e.g., the proof of
Theorem 3.50 in [21]). Nevertheless, observe that if (ū, ȳ) is feasible but not qual-
ified because (i) does not hold, then there exists a singular Lagrange multiplier
of the form (0,ΦE,0). One can see that second-order necessary conditions be-
come pointless since −(0,ΦE,0) is a singular Lagrange multiplier too. In this
perspective, we only consider qualified solutions.

Finally, we derive the following first-order necessary optimality conditions:

Theorem 3.1 Let (ū, ȳ) be a qualified local solution of (P ). Then the set of associ-
ated Lagrange multipliers is nonempty, convex, and weakly ∗ compact.
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Proof Since the abstract problem (51)–(53) is qualified, we get the result for the set
{(dη,Ψ )} of Lagrange multipliers in this setting (Theorem 4.1 in [23]). We conclude
with Lemma 3.1 and the fact that

M × R
s∗ −→ M × R

s∗ × P

(dη,Ψ ) �−→ (dη,Ψ,p)

is affine continuous (it is obvious from the proof of Lemma 2.1). �

We will prove a stronger result in Sect. 4, relying on another abstract formulation,
the so-called reduced problem. The main motivation for the reduced problem, as men-
tioned in the introduction, is actually to satisfy an extended polyhedricity condition
(see Definition 3.52 in [21]), in order to easily get second-order necessary conditions
(see Remark 3.47 in the same reference).

3.2 The Reduced Problem

In the sequel, we fix a feasible trajectory (ū, ȳ), i.e., which satisfies (2)–(5), and
denote by Λ the set of associated Lagrange multipliers (Definition 2.1). We need
some definitions.

Definition 3.2 An arc is a maximal interval, relatively open in [0, T ], denoted by
]τ1, τ2[, such that the set of active running state constraints at time t is constant for
all t ∈ ]τ1, τ2[. It includes intervals of the form [0, τ [ or ]τ, T ]. If τ does not belong
to any arc, we say that τ is a junction time.

Consider an arc ]τ1, τ2[. It is a boundary arc for the constraint gi if the latter is
active on ]τ1, τ2[; otherwise it is an interior arc for gi .

Consider an interior arc ]τ1, τ2[ for gi . If gi(τ2) = 0, then τ2 is an entry point
for gi ; if gi(τ1) = 0, then τ1 is an exit point for gi . If τ is an entry point and an exit
point, then it is a touch point for gi .

Consider a touch point τ for gi . We say that τ is reducible iff d2

dt2 gi(ȳt ), defined
in a weak sense, is a function for t close to τ , continuous at τ , and

d2

dt2
gi(ȳt )

∣∣∣∣
t=τ

< 0.

Remark 3.2 Let gi be of order at least 2, and τ be a touch point for gi . By
Lemma 2.7, τ is reducible iff t �→ g

(2)
i (t, ūt , ȳt , ū, ȳ) is continuous at τ and

g
(2)
i (τ, ūτ , ȳτ , ū, ȳ) < 0. Note that the continuity holds if ū is continuous at τ or if gi

is of order at least 3.

The interest of reducibility will appear with the next lemma. For τ ∈ [0, T ], ε > 0
(to be fixed), and any function x : [0, T ] → R, x ∈ W 2,∞, we define μτ (x) by

μτ (x) := max
{
xt : t ∈ [τ − ε, τ + ε] ∩ [0, T ]}. (62)

Thus, we get a functional μτ : W 2,∞([0, T ]) → R.



J Optim Theory Appl (2013) 159:1–40 15

Lemma 3.2 Let gi be of order at least 2 (i.e., Dũg
(1)
i ≡ 0), and hence by Lemma 2.7

gi(ȳ) ∈ W 2,∞. Let τ be a reducible touch point for gi . Then for ε > 0 small enough,
μτ is C1 in a neighborhood of gi(ȳ) and twice Fréchet differentiable at gi(ȳ), with
first and second derivatives at gi(ȳ) given by

Dμτ

(
gi(ȳ)

)
x = xτ , (63)

D2μτ

(
gi(ȳ)

)
(x)2 = − ( d

dt
xt |τ )2

d2

dt2 gi(ȳt )|τ
, (64)

for any x ∈ W 2,∞([0, T ]).

Proof We apply Lemma 23 of [18] to gi(ȳ) that belongs to W 2,∞([0, T ]) and satis-
fies the required hypotheses at τ by definition of a reducible touch point. �

Remark 3.3 We can write (63) and (64) for x = g′
i (ȳ)z[v, z0] or x=g′′

i (ȳ)(z[v, z0])2 +
g′

i (ȳ)z2[v, z0], (v, z0) ∈ U × R
n, since by Lemma 2.7 they belong to W 2,∞([0, T ]).

Moreover, we have

D2μτ

(
gi(ȳ)

)(
g′

i (ȳ)z
)2 = − (D(ỹ,u,y)g

(1)
i (τ, ȳτ , ū, [̄y])(zτ , v, z))2

g
(2)
i (τ, ūτ , ȳτ , ū, ȳ)

(65)

for z = z[v, z0], (v, z0) ∈ U × R
n.

In view of these results, we distinguish running state constraints of order 1. With-
out loss of generality, we suppose that

• gi is of order 1 for i = 1, . . . , r1,
• gi is of order at least 2 for i = r1 + 1, . . . , r ,

where 0 ≤ r1 ≤ r . We make now the following assumption:

(A1) There are finitely many junction times, and for i = r1 + 1, . . . , r , all touch
points for gi are reducible.

For i = 1, . . . , r1, we consider the contact sets of the constraints

Ii := {t ∈ [0, T ] : gi(ȳt ) = 0
}
. (66)

For i = r1 + 1, . . . , r , we remove the touch points from the contact sets:

Ti := the set of (reducible) touch points for gi, (67)

Ii := {t ∈ [0, T ] : gi(ȳt ) = 0
} \ Ti. (68)

For i = 1, . . . , r and ε ≥ 0, we denote

Iε
i := {t ∈ [0, T ] : dist(t, Ii ) ≤ ε

}
. (69)
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Assumption (A1) implies that Iε
i has finitely many connected components for any

ε ≥ 0 (1 ≤ i ≤ r) and that Ti is finite (r1 < i ≤ r). Let N :=∑r1<i≤r |Ti |.
Now we fix ε > 0 small enough (so that Lemma 3.2 holds) and define

G1(u, y0) := (gi

(
y[u,y0]

)∣∣
Iεi

)
1≤i≤r

, K1 :=
r∏

i=1

C
(
Iε
i ,R−

)
, (70)

G2(u, y0) := (μτ

(
gi

(
y[u,y0]

)))
τ∈Ti ,r1<i≤r

, K2 := R
N− , (71)

G3(u, y0) := Φ
(
y0, y[u,y0]T

)
, K3 := K. (72)

Note that Lemma 3.2 does not enable us to consider touch points for constraints of
order 1 in G2, since we want the later to be regular enough. This is not a problem;
we treat them with the boundary arcs in G1, and we will see that an extended poly-
hedricity condition (Lemma 4.5) is satisfied.

Recall that J has been defined by (54); the reduced problem is the following ab-
stract optimization problem:

(PR) min
(u,y0)∈U×Rn

J (u, y0) subject to

⎧⎪⎨
⎪⎩

G1(u, y0) ∈ K1,

G2(u, y0) ∈ K2,

G3(u, y0) ∈ K3.

Remark 3.4 We had fixed (ū, ȳ) as a feasible trajectory; then (ū, ȳ0) is feasible for
(PR). Moreover, (ū, ȳ) is a local solution of (P ) iff (ū, ȳ0) is a local solution of (PR),
and the qualification condition at (ū, ȳ) (Definition 3.1) is equivalent to Robinson’s
constraints qualification for (PR) at (ū, ȳ0) (using Lemma 3.2).

Thus, it is of interest for us to write optimality conditions for (PR).

3.3 Optimality Conditions for the Reduced Problem

The Lagrangian of (PR) is

LR(u,y0,dρ, ν,Ψ )

:= J (u, y0) +
∑

1≤i≤r

∫
Iεi

gi

(
y[u,y0]t

)
dρi,t

+
∑
τ∈Ti

r1<i≤r

νi,τμτ

(
gi

(
y[u,y0]

))+ Ψ Φ
(
y0, y[u,y0]T

)
, (73)

where u ∈ U, y0 ∈ R
n, dρ ∈∏r

i=1 M(Iε
i ), ν ∈ R

N∗, Ψ ∈ R
s∗.

As before, a measure on a closed interval is denoted by dμ and is identified with
the derivative of a function of bounded variation, which is null on the right of the
interval.
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A Lagrange multiplier of (PR) at (ū, ȳ0) is any (dρ, ν,Ψ ) such that

D(u,y0)LR(ū, ȳ0,dρ, ν,Ψ ) = 0, (74)

dρi ≥ 0, gi(ȳ)|Iεi ≤ 0,

∫
Iεi

gi(ȳt )dρi,t = 0, i = 1, . . . , r, (75)

νi,τ ≥ 0, μτ

(
gi(ȳ)

)≤ 0, νi,τμτ

(
gi(ȳ)

)= 0, τ ∈ Ti , i = r1 + 1, . . . , r, (76)

Ψ ∈ NK

(
Φ(ȳ0, ȳT )

)
. (77)

We denote by ΛR the set of Lagrange multipliers of (PR) at (ū, ȳ0). The first-order
necessary conditions for (PR) are the same as in Theorem 3.1:

Lemma 3.3 Let (ū, ȳ0) be a qualified local solution of (PR). Then ΛR is nonempty,
convex, and weakly ∗ compact.

Given (dρ, ν) ∈∏r
i=1 M(Iε

i ) × R
N∗, we define dη ∈ M by

dηi :=
{

dρi on Iε
i , i = 1, . . . , r,∑

τ∈Ti
νi,τ δτ elsewhere, i = r1 + 1, . . . , r.

(78)

Conversely, given dη ∈ M, we define (dρ, ν) ∈∏r
i=1 M(Iε

i ) × R
N∗ by

{
dρi := dηi |Iεi i = 1, . . . , r,

νi,τ := dηi

({τ }) τ ∈ Ti , i = r1 + 1, . . . , r.
(79)

In the sequel we use these definitions to identify (dρ, ν) and dη, and we denote

[ηi,τ ] := dηi

({τ }). (80)

Recall that Λ is the set of Lagrange multipliers associated with (ū, ȳ) (Definition 2.1).
We have a result similar to Lemma 3.1:

Lemma 3.4 The triple (dρ, ν,Ψ ) ∈ ΛR iff (dη,Ψ,p) ∈ Λ, with p the unique solution
of (11).

Proof With the identification between (dρ, ν) and dη given by (78) and (79), it
is clear that (75)–(76) are equivalent to (13). Let these relations be satisfied by
(dρ, ν,Ψ ) and (dη,Ψ ). Then, in particular,

supp(dηi) = supp(dρi) ⊂ Ii , i = 1, . . . , r1,

supp(dηi) = supp(dρi) ∪ supp
(∑

νi,τ δτ

)
⊂ Ii ∪ Ti , i = r1 + 1, . . . , r.

(81)

We claim that in this case (74) is equivalent to (12) and (15). Indeed, as in the proof
of Lemma 3.1, we have
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LR(u,y0,dρ, ν,Ψ ) =
∫

[0,T ]
(
H [p](t, ut , yt )dt + dptyt

)+ p0−y0 − pT+yT

+
∑

1≤i≤r

∫
Ii

gi(yt )dηi,t +
∑
τ∈Ti

r1<i≤r

[ηi,τ ]μτ

(
gi(y)

)

+ Φ[Ψ ](y0, yT ) (82)

for any p ∈ P and y = y[u,y0]. Let us differentiate (say, for i > r1)

∫
Ii

gi(yt )dηi,t +
∑
τ∈Ti

[ηi,τ ]μτ

(
gi(y)

)
(83)

w.r.t. (u, y0) at (ū, ȳ0) in the direction (v, z0) and use (63), (80), (81); we get

∫
Ii

g′
i (ȳt )zt dηi,t +

∑
τ∈Ti

[ηi,τ ]Dμτ

(
gi(ȳ)

)(
g′

i (ȳ)z
)=

∫
[0,T ]

g′
i (ȳt )zt dηi,t , (84)

where z = z[v, z0]. Let us now differentiate similarly the whole expression (82)
of LR ; we get

∫ T

0
DuH [p](t, ūt , ȳt )vt dt +

∫
[0,T ]

(
DyH [p](t, ūt , ȳt )dt + dpt + dηtg

′(ȳt )
)
zt

+ (p0− + Dy1Φ[Ψ ](ȳ0, ȳT )
)
z0 + (−pT+ + Dy2Φ[Ψ ](ȳ0, ȳT )

)
zT . (85)

Fixing p as the unique solution of (11) in (85) gives

D(u,y0)LR(ū, ȳ0,dρ, ν,Ψ )(v, z0) =
∫ T

0
DuH [p](t, ūt , ȳt )vt dt

+ (p0− + Dy1Φ[Ψ ](ȳ0, ȳT )
)
z0.

It is now clear that (74) is equivalent to (12) and (15). �

For the second-order optimality conditions, we need to evaluate the Hessian of LR .
For λ = (dη,Ψ,p) ∈ Λ, (v, z0) ∈ U × R

n, and z = z[v, z0] ∈ Y , we denote

J [λ](v, z0) :=
∫ T

0
D2

(u,y)2H [p](t, ūt , ȳt )(vt , zt )
2 dt + D2Φ[Ψ ](ȳ0, ȳT )(z0, zT )2

+
∑

1≤i≤r

∫
Ii

g′′
i (ȳt )(zt )

2 dηi,t

+
∑
τ∈Ti

r1<i≤r

[ηi,τ ]
[
g′′

i (ȳτ )(zτ )
2 + D2μτ

(
gi(ȳ)

)(
g′

i (ȳ)z
)2]

. (86)
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In view of (65) and (81), we can also write

J [λ](v, z0) =
∫ T

0
D2

(u,y)2H [p](t, ūt , ȳt )(vt , zt )
2 dt + D2Φ[Ψ ](ȳ0, ȳT )(z0, zT )2

+
∫

[0,T ]
dηt g

′′(ȳt )(zt )
2

−
∑
τ∈Ti

r1<i≤r

[ηi,τ ] (D(ỹ,u,y)g
(1)
i (τ, ȳτ , ū, ȳ)(zτ , v, z))2

g
(2)
i (τ, ūτ , ȳτ , ū, ȳ)

. (87)

Lemma 3.5 Let (dρ, ν,Ψ ) ∈ ΛR . Let (dη,Ψ,p) ∈ Λ be given by Lemma 3.4 and
denoted by λ. Then, for all (v, z0) ∈ U × R

n,

D2
(u,y0)

2LR(ū, ȳ0,dρ, ν,Ψ )(v, z0)
2 = J[λ](v, z0). (88)

Proof We will use (82) and (83) from the previous proof. First, we differentiate
(83) twice w.r.t. (u, y0) at (ū, ȳ0) in the direction (v, z0). Let z = z[v, z0] and
z2 = z2[v, z0], defined by (20); we get, for i > r1,
∫

Ii

(
g′′

i (ȳt )(zt )
2 + g′

i (ȳt )z
2
t

)
dηi,t

+
∑
τ∈Ti

[ηi,τ ]
[
D2μτ

(
gi(ȳ)

)(
g′

i (ȳ)z
)2 + Dμτ

(
gi(ȳ)

)(
g′′

i (ȳ)(z)2 + g′
i (ȳ)z2)]

=
∫

Ii
g′′

i (ȳt )(zt )
2 dηi,t +

∫
[0,T ]

g′
i (ȳt )z

2
t dηi,t

+
∑
τ∈Ti

[ηi,τ ]
[
D2μτ

(
gi(ȳ)

)(
g′

i (ȳ)z
)2 + g′′

i (ȳτ )(zτ )
2],

where we have used Remark 3.3, (63), and (81). Second, we differentiate LR twice
using (82), and then we fix p as the unique solution of (11). The result follows as in
the proof of Lemma 3.4. �

Suppose that Λ �= ∅ and let λ̄ = (dη̄, Ψ̄ , p̄) ∈ Λ. We define the critical L2 cone as
the set C2 of (v, z0) ∈ V2 × R

n such that
{

g′
i (ȳ)z ≤ 0 on Ii ,

g′
i (ȳ)z = 0 on supp(dη̄i ) ∩ Ii ,

i = 1, . . . , r, (89)

{
g′

i (ȳτ )zτ ≤ 0,

[η̄i,τ ]g′
i (ȳτ )zτ = 0,

τ ∈ Ti , i = r1 + 1, . . . , r, (90)

{
DΦ(ȳ0, ȳT )(z0, zT ) ∈ TK

(
Φ(ȳ0, ȳT )

)
,

Ψ̄ DΦ(ȳ0, ȳT )(z0, zT ) = 0,
(91)
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where z = z[v, z0] ∈ Z2. Then the critical cone for (PR) (see Proposition 3.10 in [21])
is the set

C∞ := C2 ∩ (U × R
n
)
,

and the cone of radial critical directions for (PR) (see Definition 3.52 in [21]) is the
set

CR∞ := {(v, z0) ∈ C∞ : ∃σ̄ > 0 : gi(ȳ) + σ̄ g′
i (ȳ)z ≤ 0 on Iε

i , i = 1, . . . , r
}
,

where z = z[v, z0] ∈ Y . These three cones do not depend on the choice of λ̄.
In view of Lemma 3.5, the second-order necessary conditions for (PR) can be

written as follows:

Lemma 3.6 Let (ū, ȳ0) be a qualified local solution of (PR). Then, for any
(v, z0) ∈ CR∞, there exists λ ∈ Λ such that

J[λ](v, z0) ≥ 0. (92)

Proof Corollary 5.1 in [15]. �

4 Strong Results

Recall that (ū, ȳ) is a feasible trajectory that has been fixed to define the reduced
problem at the beginning of Sect. 3.2.

4.1 Extra Assumptions and Consequences

We were so far under assumptions (A0)–(A1). We make now some extra assumptions,
which will imply a partial qualification of the running state constraints, as well as the
density of CR∞ in a larger critical cone.

(A2) Each running state constraint gi, i = 1, . . . , r , is of finite order qi .

Notations Given a subset J ⊂ {1, . . . , r}, say J = {i1 < · · · < il}, we define

G
(q)
J : R × R

m × R
n × U × Y → R

|J | by

G
(q)
J (t, ũ, ỹ, u, y) :=

⎛
⎜⎜⎝

ḡ
(qi1 )

i1
(t, ũ, ỹ, u, y)

...

ḡ
(qil

)

il
(t, ũ, ỹ, u, y)T

⎞
⎟⎟⎠ . (93)

For ε0 ≥ 0 and t ∈ [0, T ], let

I
ε0
t := {1 ≤ i ≤ r : t ∈ Iε0

i

}
, (94)

M
ε0
t := DũG

(q)

I
ε0
t

(t, ūt , ȳt , ū, ȳ) ∈ M|I ε0
t |,m(R). (95)
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(A3) There exist ε0, γ > 0 such that, for all t ∈ [0, T ],
∣∣(Mε0

t

)∗
ξ
∣∣≥ γ |ξ | ∀ξ ∈ R

|I ε0
t |. (96)

(A4) The initial condition satisfies g(ȳ0) < 0, and the final time T is not an entry
point (i.e., there exists τ < T such that the set I 0

t of active constraints at time t is
constant for t ∈ ]τ, T ]).

Remark 4.1

1. We do not assume that ū is continuous, as was done in [20].
2. Assumption (A3) says that M

ε0
t is onto, uniformly w.r.t. t . Note that each con-

straint is considered only in a neighborhood of its contact set. Note also that in
the case of one running state constraint (r = 1) of order q and if ū is continuous,
assumption (A3) is equivalent to

∂g(q)

∂ũ
(t, ūt , ȳt , ū, ȳ) �= 0 ∀t ∈ I. (97)

See Appendix A.2 for Example A.1, where this assumption is discussed.
3. Recall that ε has been fixed to define the reduced problem. Without loss of gen-

erality, we suppose that 2ε0 < min{|τ − τ ′| : τ, τ ′ distinct junction times} and
ε < ε0 < min{τ : τ junction times}. We omit it in the notation M

ε0
t .

4. In some cases, we can treat the case where T is an entry point, say for the con-
straint gi :

• if 1 ≤ i ≤ r1 (i.e., if qi = 1), then what follows works similarly.
• if r1 < i ≤ r (i.e., if qi > 1) and d

dt
gi(ȳt )|t=T > 0, then we can replace in the

reduced problem the running state constraint gi(y[u,y0])|[T −ε,T ] ≤ 0 by the
final state constraint gi(y[u,y0]T ) ≤ 0.

5. By assumption (A1) we can write

[0, T ] = J0 ∪ · · · ∪ Jκ, (98)

where Jl (l = 0, . . . , κ) are the maximal intervals in [0, T ] such that I
ε0
t is constant

(say equal to Il) for t ∈ Jl . We order J0, . . . , Jκ in [0, T ]. Observe that for any
l ≥ 1, Jl−1 ∩ Jl = {τ ± ε0} with τ a junction time.

For s ∈ [1,∞], we denote

W(q),s
([0, T ]) :=

r∏
i=1

Wqi,s
([0, T ]), W(q),s

(
Iε
) :=

r∏
i=1

Wqi,s
(
I ε
i

)
, (99)

and for

ϕ =
⎛
⎜⎝

ϕ1
...

ϕr

⎞
⎟⎠ ∈ W(q),s

([0, T ]), ϕ|I ε :=
⎛
⎜⎝

ϕ1|I ε
1

...

ϕr |I ε
r

∈ W(q),s(I ε).

⎞
⎟⎠
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Using Lemma 2.7, we define, for s ∈ [1,∞] and z0 ∈ R
n,

As,z0 : Vs −→ W(q),s
([0, T ])

v �−→ g′(ȳ)z[v, z0]. (100)

We give now the statement of a lemma in two parts, which will be of great interest
for us (particularly in Sect. 4.3.3). The proof is technical and can be skipped at a first
reading. It is given in the next section.

Lemma 4.1

(a) Let s ∈ [1,∞] and z0 ∈ R
n. Let b̄ ∈ W(q),s(Iε). Then there exists v ∈ Vs such that

(As,z0v)|Iε = b̄. (101)

(b) Let z0 ∈ R
n. Let (b̄, v̄) ∈ W(q),2(Iε) × V2 be such that

(A2,z0 v̄)|Iε = b̄. (102)

Let bk ∈ W(q),∞(Iε), k ∈ N, be such that bk W(q),2(Iε)−−−−−→ b̄. Then there exist vk ∈ U,

k ∈ N, such that vk L2−→ v̄ and (
A∞,z0v

k
)|Iε = bk. (103)

4.2 A Technical Proof

In this section we prove Lemma 4.1. The proofs of (a) and (b) are very similar; in
both cases we proceed in κ + 1 steps using the decomposition (98) of [0, T ]. At
each step, we will use the following two lemmas, proved in Appendixes A.3 and A.2,
respectively.

The first one uses only assumption (A1) and the definitions that follow.

Lemma 4.2 Let t0 := τ ± ε0 where τ is a junction time.

(a) Let s ∈ [1,∞] and z0 ∈ R
n. Let (b̄, v) ∈ W(q),s(Iε) × Vs be such that

(As,z0v)|Iε = b̄ on [0, t0]. (104)

Then we can extend b̄ to b̃ ∈ W(q),s([0, T ]) in such a way that

b̃ = As,z0v on [0, t0]. (105)

(b) Let z0 ∈ R
n. Let (b̄, v̄) ∈ W(q),2(Iε) × V2 be such that

(A2,z0 v̄)|Iε = b̄. (106)

Let (bk, vk) ∈ W(q),∞(Iε) × U, k ∈ N, be such that

(
bk, vk

) W(q),2×L2−−−−−−→ (b̄, v̄), and (107)(
A∞,z0v

k
)|Iε = bk on [0, t0]. (108)
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Then we can extend bk to b̃k ∈ W(q),∞([0, T ]), k ∈ N, in such a way that

b̃k
W(q),2

(
[0,T ]

)
−−−−−−−−→ A2,z0 v̄, and (109)

b̃k = A∞,z0v
k on [0, t0]. (110)

The second lemma relies on assumption (A3).

Lemma 4.3 Let s ∈ [1,∞] and z0 ∈ R
n. Let l be such that Il �= ∅. For t ∈ Jl , we

denote⎧⎨
⎩

Mt := DũG
(q)
Il

(t, ūt , ȳt , ū, ȳ) ∈ L
(
R

m,R
|Il |),

Nt := D(ỹ,u,y)G
(q)
Il

(t, ūt , ȳt , ū, ȳ) ∈ L
(
R

n∗ × U∗ × Y∗,R
|Il |). (111)

(a) Let (h̄, v) ∈ Ls(Jl;R
|Il |) × Vs . Then there exists ṽ ∈ Vs such that

{
ṽ = v on J0 ∪ · · · ∪ Jl−1,

Mt ṽt + Nt

(
z[ṽ, z0]t , ṽ, z[ṽ, z0]

)= h̄t for a.a. t ∈ Jl.
(112)

(b) Let (h̄, v̄) ∈ Ls(Jl;R
|Il |) × Vs be such that

Mtv̄t + Nt

(
z[v̄, z0]t , v̄, z[v̄, z0]

)= h̄t for a.a. t ∈ Jl. (113)

Let (hk, vk) ∈ L∞(Jl;R
|Il |)×U, k ∈ N, be such that (hk, vk)

Ls×Ls−−−−→ (h̄, v̄). Then

there exists ṽk ∈ U, k ∈ N, such that ṽk Ls−→ v̄ and
{

ṽk = vk on J0 ∪ · · · ∪ Jl−1,

Mt ṽ
k
t + Nt

(
z
[
ṽk, z0

]
t
, ṽk, z

[
ṽk, z0

])= hk
t for a.a. t ∈ Jl.

(114)

Proof of Lemma 4.1 In the sequel we omit z0 in the notations.
(a) Let b̄ ∈ W(q),s(Iε). We need to find v ∈ Vs such that

g′
i (ȳ)z[v] = b̄i on Iε

i , i = 1, . . . , r. (115)

Since

v = v′ on [0, t] =⇒ z[v] = z
[
v′] on [0, t],

let us construct v0, . . . , vκ ∈ Vs such that, for all l,
{

vl = vl−1 on J0 ∪ · · · ∪ Jl−1,

g′
i (ȳ)z[vl] = b̄i on Iε

i ∩ Jl, i = 1, . . . , r,

and v := vκ will satisfy (115).
By assumption (A4), J0 = [0, τ1 − ε0[, where τ1 is the first junction time, and then

Iε
i ∩ J0 = ∅ for all i; we choose v0 := 0.
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Suppose that we have v0, . . . vl−1 for some l ≥ 1 and let us construct vl . We apply
Lemma 4.2 (a) to (b̄, vl−1) with {t0} = Jl−1 ∩Jl , and we get b̃ ∈ W(q),s([0, T ]). Since
I ε
i ∩ Jl = ∅ if i �∈ Il , it is now enough to find vl such that

{
vl = vl−1 on J0 ∪ · · · ∪ Jl−1,

g′
i (ȳ)z[vl] = b̃i on Jl, i ∈ Il .

(116)

Suppose that vl = vl−1 on J0 ∪ · · · ∪ Jl−1. Then g′
i (ȳ)z[vl] = b̃i on Jl−1, and it

follows that

g′
i (ȳ)z

[
vl
]= b̃i on Jl (117)

�
dqi

dtqi
g′

i (ȳ)z
[
vl
]= dqi

dtqi
b̃i on Jl. (118)

And by Lemma 2.7, (118) is equivalent to

Dũg
(qi )
i (t, ūt , ȳt , ū, ȳ)vl

t + D(ỹ,u,y)g
(qi )
i (t, ūt , ȳt , ū, ȳ)

(
z
[
vl
]
t
, vl, z

[
vl
])= b̃

(qi )
i (t)

(119)
for a.a. t ∈ Jl .

If Il = ∅, we choose vl := vl−1. Otherwise, say Il = {i1 < · · · < ip} and define
on Jl

h̄ :=

⎛
⎜⎜⎝

b̃
(qi1 )

i1
...

b̃
(qip )

ip

⎞
⎟⎟⎠ ∈ Ls

(
Jl;R

|Il |).

Then (116) is equivalent to
{

vl = vl−1 on J0 ∪ · · · ∪ Jl−1,

Mtv
l
t + Nt

(
z
[
vl
]
t
, vl, z

[
vl
])= h̄t for a.a. t ∈ Jl.

(120)

Applying Lemma 4.3 (a) to (h, vl−1), we get ṽ such that (120) holds; we choose
vl := ṽ.

(b) We follow a similar scheme to the one of the proof of (a).
Let (b̄, v̄) ∈ W(q),2(Iε) × V2 be such that

g′
i (ȳ)z[v̄] = b̄i on Iε, i = 1, . . . , r.

Let bk ∈ W(q),∞(Iε), k ∈ N, be such that bk W(q),2−−−→ b̄. Let us construct

vk,0, . . . , vk,κ ∈ U, k ∈ N, such that for all l, vk,l L2−−−→
k→∞ v̄, and

{
vk,l = vk,l−1 on J0 ∪ · · · ∪ Jl−1,

g′
i (ȳ)z

[
vk,l
]= bk

i on Iε
i ∩ Jl, i ∈ Il.

We will conclude the proof by defining vk := vk,κ , k ∈ N.
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We choose, for vk,0, the truncation of v̄, k ∈ N (see Definition A.1 in Ap-
pendix A.2).

Suppose that we have vk,0, . . . , vk,l−1, k ∈ N, for some l ≥ 1 and let us construct
vk,l , k ∈ N. We apply Lemma 4.2 (b) to (bk, vk,l−1) with {t0} = Jl−1 ∩ Jl , and we
get, for k ∈ N, b̃k ∈ W(q),∞([0, T ]). In particular,

b̃k W(q),2−−−→ b̃, (121)

where b̃ := g′(ȳ)z[v̄] ∈ W(q),2([0, T ]). And it is now enough to find vk,l , k ∈ N, such

that vk,l L2−−−→
k→∞ v̄ and

{
vk,l = vk,l−1 on J0 ∪ · · · ∪ Jl−1,

g′
i (ȳ)z

[
vk,l
]= b̃k

i on Jl, i ∈ Il.
(122)

If Il = ∅, we choose vk,l = vk,l−1, k ∈ N. Otherwise, say Il = {i1 < · · · < ip} and
define on Jl

h̄ :=

⎛
⎜⎜⎝

b̃
(qi1 )

i1
...

b̃
(qip )

ip

⎞
⎟⎟⎠ ∈ L2(Jl;R

|Il |), hk :=

⎛
⎜⎜⎝

(b̃k
i1
)(qi1 )

...

(b̃k
ip

)
(qip )

⎞
⎟⎟⎠ ∈ L∞(Jl;R

|Il |).

We have

Mtv̄t + Nt

(
z[v̄]t , v̄, z[v̄])= h̄t for a.a. t ∈ Jl,

and (122) is equivalent to{
vk,l = vk,l−1 on J0 ∪ · · · ∪ Jl−1,

Mtv
k,l
t + Nt

(
z
[
vk,l
]
t
, vk,l, z

[
vk,l
])= hk

t for a.a. t ∈ Jl.
(123)

By (121), hk L2−→ h̄, and by assumption, vk,l−1 L2−−−→
k→∞ v̄. Applying Lemma 4.3 (b)

to (hk, vk,l−1), we get ṽk , k ∈ N, such that ṽk L2−→ v̄ and (123) holds; we choose
vk,l = ṽk , k ∈ N. �

4.3 Necessary Conditions

Recall that we are under assumptions (A0)–(A4).

4.3.1 Structure of the Set of Lagrange Multipliers

Recall that we denote by Λ the set of Lagrange multipliers associated with (ū, ȳ)

(Definition 2.1). We consider the projection map

π : M × R
s∗ × P −→ R

N∗ × R
s∗

(dη,Ψ,p) �−→ (([ηi,τ ]
)
τ,i

,Ψ
)

where τ ∈ Ti , i = r1 + 1, . . . , r . A consequence of Lemma 4.1 (a) is the following:
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Lemma 4.4 π |Λ is injective.

Proof We will use the fact that one of the constraints, namely G1, has a surjective
derivative. For dρ ∈∏r

i=1 M(Iε
i ), we define Fρ ∈ (W(q),∞(Iε))∗ by

Fρ(ϕ) :=
∑

1≤i≤r

∫
Iεi

ϕi,tdρi,t for all ϕ ∈ W(q),∞(Iε
)
.

Since by Lemma 2.7, DG1(ū, ȳ0)(v, z0) ∈ W(q),∞(Iε) for all (v, z0) ∈ U × R
n, we

have
〈
dρ,DG1(ū, ȳ0)(v, z0)

〉= 〈Fρ,DG1(ū, ȳ0)(v, z0)
〉

= 〈(DG1(ū, ȳ0)
)∗

Fρ, (v, z0)
〉
.

Then differentiating LR , defined by (73), w.r.t. (u, y0) we get

D(u,y0)LR(ū, ȳ0,dρ, ν,Ψ )

= DJ(ū, ȳ0) + DG1(ū, ȳ0)
∗Fρ + DG2(ū, ȳ0)

∗ν + DG3(ū, ȳ0)
∗Ψ. (124)

Let (dη,Ψ,p), (dη′,Ψ ′,p′) ∈ Λ be such that π((dη,Ψ,p)) = π((dη′,Ψ ′,p′)). Let
by Lemma 3.4 (dρ, ν), (dρ′, ν′) be such that (dρ, ν,Ψ ), (dρ′, ν′,Ψ ′) ∈ ΛR . Then
(ν,Ψ ) = (ν′,Ψ ′), and by the definition of ΛR ,

D(u,y0)LR(ū, ȳ0,dρ, ν,Ψ ) = D(u,y0)LR

(
ū, ȳ0,dρ′, ν,Ψ

)= 0.

Then, by (124), DG1(ū, ȳ0)
∗Fρ = DG1(ū, ȳ0)

∗Fρ′ , and, as a consequence of
Lemma 4.1 (a), DG1(ū, ȳ0)

∗ is injective on (W(q),∞(Iε))∗. Then Fρ = Fρ′ , and by
density of W(q),∞(Iε) in

∏
C(Iε

i ), we get dρ = dρ′. Together with ν = ν′, this im-
plies dη = dη′ and then (dη,Ψ,p) = (dη′,Ψ ′,p′). �

As a corollary, we get a refinement of Theorem 3.1:

Theorem 4.1 Let (ū, ȳ) be a qualified local solution of (P ). Then Λ is nonempty,
convex, of finite dimension, and compact.

Proof Let Λπ := π(Λ). By Theorem 3.1, Λ is nonempty, convex, and weakly ∗
compact, and Λπ is nonempty, convex, of finite dimension, and compact (π is linear
continuous, and its values lie in a finite-dimensional vector space). By Lemma 4.4,
π |Λ : Λ → Λπ is a bijection. We claim that its inverse

m : Λπ −→ Λ(([ηi,τ ]
)
τ,i

,Ψ
) �−→ (dη,Ψ,p)

is the restriction of a continuous affine map. Since Λ = m(Λπ), the result follows.
For the claim, using the convexity of both Λπ and Λ, the linearity of π , and its
injectivity when restricted to Λ, we get that m preserves convex combinations of
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elements from Λπ . Thus, we can extend it to an affine map on the affine subspace of
R

N∗ × R
s∗ spanned by Λπ . Since this subspace is of finite dimension, the extension

of m is continuous. �

4.3.2 Second-Order Conditions on a Large Critical Cone

Recall that for λ ∈ Λ, J [λ] has been defined on U × R
n by (86) or (87).

Remark 4.2 The form J is quadratic w.r.t. (v, z0) and affine w.r.t. λ. By Lemmas 2.2,
2.3, and 2.7, J [λ] can be extended continuously to V2 ×R

n for any λ ∈ Λ. We obtain
the so-called Hessian of Lagrangian

J [λ] : V2 × R
n −→ R, (125)

which is jointly continuous w.r.t. λ and (v, z0).

The critical L2 cone C2 has been defined by (89)–(91). Let the strict critical L2

cone be the set

CS
2 := {(v, z0) ∈ C2 : g′

i (ȳ)z = 0 on Ii , i = 1, . . . , r
}
,

where z = z[v, z0] ∈ Z2.

Theorem 4.2 Let (ū, ȳ) be a qualified local solution of (P ). Then, for any
(v, z0) ∈ CS

2 , there exists λ ∈ Λ such that

J [λ](v, z0) ≥ 0. (126)

The proof is based on the following density lemma, announced in the introduction
and proved in the next section:

Lemma 4.5 CR∞ ∩ CS
2 is dense in CS

2 for the L2 × R
n norm.

Proof of Theorem 4.2 Let (v, z0) ∈ CS
2 . By Lemma 4.5, there exists a sequence

(vk, zk
0) ∈ CR∞ ∩ CS

2 , k ∈ N, such that

(
vk, zk

0

)−→ (v, z0).

By Lemma 3.6 there exists a sequence λk ∈ Λ, k ∈ N, such that

J
[
λk
](

vk, zk
0

)≥ 0. (127)

By Theorem 4.1, Λ is strongly compact; then there exists λ ∈ Λ such that, up to a
subsequence,

λk −→ λ.

We conclude by passing to the limit in (127), thanks to Remark 4.2. �
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4.3.3 Density Result

In this section we prove Lemma 4.5, using Lemma 4.1 (b). A result similar to
Lemma 4.5 is stated, in the framework of ODEs, as Lemma 5 in [20], but the proof
given there is wrong. Indeed, the costates in the optimal control problems of steps (a)
and (c) are actually not of bounded variation, and thus the solutions are not essen-
tially bounded. It has to be highlighted that in Lemma 4.1 (b) we get a sequence of
essentially bounded vk .

Proof of Lemma 4.5 We define one more cone,

CR+∞ = {(v, z0) ∈ CR∞ ∩ CS
2 : ∃δ > 0 : g′

i (ȳ)z[v, z0] = 0 on Iδ
i , i = 1, . . . , r

}
,

and we show actually that CR+∞ is dense in CS
2 .

To this end, we consider the following two normed vector spaces:

X+∞ := {(v, z0) ∈ U × R
n : ∃δ > 0 : g′

i (ȳ)z[v, z0] = 0 on Iδ
i , i = 1, . . . , r

}
,

X2 := {(v, z0) ∈ V2 × R
n : g′

i (ȳ)z[v, z0] = 0 on Ii , i = 1, . . . , r
}
.

Observe that CR+∞ and CS
2 are defined as the same polyhedral cone by (90)–(91),

respectively in X+∞ and X2. In view of Lemma 1 in [24], it is then enough to show
that X+∞ is dense in X2.

We will need the following lemma, proved in Appendix A.3:

Lemma 4.6 Let b̄i ∈ W(qi),2(Iε
i ) be such that

b̄i = 0 on Ii . (128)

Then there exists bδ
i ∈ W(qi),∞(Iε

i ), δ ∈]0, ε[, such that bδ
i

W(qi ),2−−−−→
δ→0

b̄i and

bδ
i = 0 on Iδ

i . (129)

Going back to the proof of Lemma 4.5, let (v̄, z̄0) ∈ X2 and b̄ := (A2,z̄0 v̄)|Iε . We
consider a sequence δk ↘ 0 and, for i = 1, . . . , r , bk

i := b
δk

i ∈ W(qi),∞(Iε
i ) given by

Lemma 4.6. Applying Lemma 4.1 b) to bk , we get vk , k ∈ N. We have (vk, z̄0) ∈ X+∞
and (vk, z̄0) −→ (v̄, z̄0). The proof is completed. �

4.4 Sufficient Conditions

We still are under assumptions (A0)–(A4).

Definition 4.1 A quadratic form Q over a Hilbert space X is a Legendre form iff it is
weakly lower semi-continuous and satisfies the following property: if xk ⇀ x weakly
in X and Q(xk) → Q(x), then xk → x strongly in X.
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Theorem 4.3 Suppose that for any (v, z0) ∈ C2, there exists λ ∈ Λ such that J[λ] is
a Legendre form and

J [λ](v, z0) > 0 if (v, z0) �= 0. (130)

Then (ū, ȳ) is a local solution of (P ) satisfying the following quadratic growth con-
dition: there exist β > 0 and α > 0 such that

J (u, y0) ≥ J (ū, ȳ0) + 1

2
β
(‖u − ū‖2 + |y0 − ȳ0|

)2
(131)

for any trajectory (u, y) feasible for (P ) and such that ‖u − ū‖∞ + |y0 − ȳ0| ≤ α.

Remark 4.3 Let λ = (dη,Ψ,p) ∈ Λ. The strengthened Legendre–Clebsch condition

∃ᾱ > 0 : D2
uuH [p](t, ūt , ȳt ) ≥ ᾱIm for a.a. t ∈ [0, T ] (132)

is satisfied iff J[λ] is a Legendre form (it can be proved by combining Theorem 11.6
and Theorem 3.3 in [25]).

Proof of Theorem 4.3 (i) Let us assume that (130) holds but (131) does not. Then
there exists a sequence of feasible trajectories (uk, yk) such that

⎧⎨
⎩
(
uk, yk

0

) L∞×R
n−−−−→ (ū, ȳ0),

(
uk, yk

0

) �= (ū, ȳ0),

J
(
uk, yk

0

)≤ J (ū, ȳ0) + o
(∥∥uk − ū

∥∥
2 + ∣∣yk

0 − ȳ0
∣∣)2.

(133)

Let σk := ‖uk − ū‖2 + |yk
0 − ȳ0| and (vk, zk

0) := σ−1
k (uk − ū, yk

0 − ȳ0) ∈ U × R
n.

There exists (v̄, z̄0) ∈ V2 × R
n such that, up to a subsequence,

(
vk, zk

0

)
⇀ (v̄, z̄0) weakly in V2 × R

n.

(ii) We claim that (v̄, z̄0) ∈ C2.
Let zk := z[vk, zk

0] ∈ Y and z̄ := z[v̄, z̄0] ∈ Z2. We derive from the compact em-
bedding Z2 ⊂ C([0, T ];R

n) that, up to a subsequence,

zk → z̄ in C
([0, T ];R

n
)
. (134)

Moreover, it is classical (see, e.g., the proof of Lemma 20 in [18]) that

J
(
uk, yk

0

)= J (ū, ȳ0) + σkDJ(ū, ȳ0)
(
vk, zk

0

)+ o(σk), (135)

g
(
yk
)= g(ȳ) + σkg

′(ȳ)zk + o(σk), (136)

Φ
(
yk

0 , yk
T

)= Φ(ȳ0, ȳT ) + σkDΦ(ȳ0, ȳT )
(
zk

0, z
k
T

)+ o(σk). (137)
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It follows that

DJ(ū, ȳ0)(v̄, z̄0) ≤ 0, (138){
g′

i (ȳ)z̄ ≤ 0 on Ii , i = 1, . . . , r1,

g′
i (ȳ)z̄ ≤ 0 on Ii ∪ Ti , i = r1 + 1, . . . , r.

(139)

DΦ(ȳ0, ȳT )
(
z̄0, z[v̄, z̄0]T

) ∈ TK

(
Φ(ȳ0, ȳT )

)
, (140)

using (133) for (138) and the fact that (ū, ȳ) and (uk, yk) are feasible for (139)
and (140). By Lemma 3.1, given λ̄ = (dη̄, Ψ̄ , p̄) ∈ Λ, we have

DJ(ū, ȳ0)(v̄, z̄0) +
∫

[0,T ]
dη̄t g

′(ȳt ) + Ψ̄ DΦ(ȳ0, ȳT )(z̄0, z̄T ) = 0.

Together with Definition 2.1 and (138)–(140), this implies that each of the three terms
is null, i.e., (v̄, z̄0) ∈ C2.

(iii) Then by (130) there exists λ̄ ∈ Λ such that J [λ̄] is a Legendre form and

0 ≤ J [λ̄](v̄, z̄0). (141)

In particular, J [λ̄] is weakly lower semi-continuous. Then

J [λ̄](v̄, z̄0) ≤ lim inf
k

J [λ̄](vk, zk
0

)≤ lim sup
k

J [λ̄](vk, zk
0

)
. (142)

We claim that

lim sup
k

J [λ̄](vk, zk
0

)≤ 0. (143)

Indeed, similarly to (135)–(137), one can show that, λ̄ being a multiplier,

LR

(
uk, yk

0 , λ̄
)− LR(ū, ȳ0, λ̄) = 1

2
σ 2

k D2
(u,y0)

2LR(ū, ȳ0, λ̄)
(
vk, zk

0

)2 + o
(
σ 2

k

)
. (144)

Since LR(uk, yk
0 , λ̄) − LR(ū, ȳ0, λ̄) ≤ J (uk, yk

0 ) − J (ū, ȳ0), we derive from (133),
(144), and Lemma 3.5 that

J [λ̄](vk, zk
0

)≤ o(1). (145)

(iv) We derive from (141), (142), and (143) that

J [λ̄](vk, zk
0

)−→ 0 = J [λ̄](v̄, z̄0).

By (130), (v̄, z̄0) = 0. Then (vk, zk
0) −→ (v̄, z̄0) strongly in V2 ×R

n by the definition
of a Legendre form. We get a contradiction with the fact that ‖vk‖2 + |zk

0| = 1 for
all k. �

In view of Theorems 4.2 and 4.3, it appears that, under an extra assumption of the
type of strict complementarity on the running state constraints, we can state no-gap
second-order optimality conditions. We denote by ri(Λ) the relative interior of Λ (see
Definition 2.16 in [21]).
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Corollary 4.1 Let (ū, ȳ) be a qualified feasible trajectory for (P ). We assume that
CS

2 = C2 and that for any λ ∈ ri(Λ), the strengthened Legendre–Clebsch condition
(132) holds. Then (ū, ȳ) is a local solution of (P ) satisfying the quadratic growth
condition (131) iff for any (v, z0) ∈ C2 \ {0}, there exists λ ∈ Λ such that

J [λ](v, z0) > 0. (146)

Proof Suppose that (146) holds for some λ ∈ Λ; then it holds for some λ ∈ ri(Λ) too,
and now J [λ] is a Legendre form. By Theorem 4.3, there is locally quadratic growth.

Conversely, suppose that (131) holds for some β > 0 and let

Jβ(u, y0) := J (u, y0) − 1

2
β
(‖u − ū‖2 + |y0 − ȳ0|

)2
.

Then (ū, ȳ0) is a local solution of the following optimization problem:

min
(u,y0)∈U×Rn

Jβ(u, y0) subject to Gi(u, y0) ∈ Ki, i = 1,2,3.

This problem has the same Lagrange multipliers as the reduced problem (write that
the respective Lagrangian is stationary at (ū, ȳ0)), the same critical cones, and its
Hessian of Lagrangian is

Jβ [λ](v, z0) = J [λ](v, z0) − β
(‖v‖2 + |z0|

)2
.

Theorem 4.2 applied to this problem gives (146). �

Remark 4.4 A sufficient condition (not necessary a priori) to have CS
2 = C2 is the

existence of (dη̄, Ψ̄ , p̄) ∈ Λ such that

supp(dη̄i ) = Ii , i = 1, . . . , r.

5 Concluding Remarks

Our main result in this paper is the statement of second-order necessary conditions
on a large critical cone. This result is obtained by density, under some assumptions
on the running state constraints and their contact sets. The density technique might
be adapted to mixed control-state constraints.

These necessary conditions turn out to be no-gap optimality conditions if a strict
complementarity condition and a strengthened Legendre–Clebsch condition hold. It
has to be noted that the latter would be satisfied if we could state second-order op-
timality conditions involving Pontryagin multipliers, as we intend to do in a future
work.

An extension of the results presented here to other classes of equations with mem-
ory, such as delay differential equations, should also be possible.
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Appendix

A.1 Functions of Bounded Variation

The main reference here is [26], Sect. 3.2. Recall that with the definition of
BV([0, T ];R

n∗) given at the beginning of Sect. 2.2, for h ∈ BV([0, T ];R
n∗), there

exist h0− , hT+ ∈ R
n∗ such that (6) holds.

Lemma A.1 Let h ∈ BV([0, T ];R
n∗). Let hl , hr be defined for all t ∈ [0, T ] by

hl
t := h0− + dh

([0, t[), (147)

hr
t := h0− + dh

([0, t]). (148)

Then they are both in the same equivalence class of h, hl is left continuous, hr is right
continuous, and, for all t ∈ [0, T ],

hl
t = hT+ − dh

([t, T ]), (149)

hr
t = hT+ − dh

(]t, T ]). (150)

Proof Theorem 3.28 in [26]. �

The identification between measures and functions of bounded variation that we
mention at the beginning of Sect. 2.2 relies on the following:

Lemma A.2 The linear map

(c,μ) �−→ (
h : t �→ c − μ

([t, T ])) (151)

is an isomorphism between R
r∗ ×M([0, T ];R

r∗) and BV([0, T ];R
r∗), whose inverse

is

h �−→ (hT+ ,dh). (152)

Proof Theorem 3.30 in [26]. �

Let us now prove Lemma 2.1:

Proof of Lemma 2.1 By (149), a solution in P of (11) is any p ∈ L1([0, T ];R
n∗) such

that, for a.e. t ∈ [0, T ],

pt = Dy2Φ[Ψ ](y0, yT ) +
∫ T

t

DyH [p](s, us, ys)ds +
∫

[t,T ]
dηs g′(ys). (153)

We define Θ : L1([0, T ];R
n∗) → L1([0, T ];R

n∗) by

Θ(p)t := Dy2Φ[Ψ ](y0, yT ) +
∫ T

t

DyH [p](s, us, ys)ds +
∫

[t,T ]
dηs g′(ys) (154)
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for a.e. t ∈ [0, T ], and we show that Θ has a unique fixed point. Let C > 0 be such
that ‖Dyf ‖∞, ‖D2

y,τ f ‖∞ ≤ C along (u, y). Then

∣∣Θ(p1)t − Θ(p2)t
∣∣=
∣∣∣∣
∫ T

t

(
DyH [p1](s, us, ys) − DyH [p2](s, us, ys)

)
ds

∣∣∣∣
≤ C

∫ T

t

[∣∣p1(s) − p2(s)
∣∣+
∫ T

s

∣∣p1(θ) − p2(θ)
∣∣dθ

]
ds

= C

∫ T

t

[∣∣p1(s) − p2(s)
∣∣+
∫ s

t

∣∣p1(s) − p2(s)
∣∣dθ

]
ds

≤ C(1 + T )

∫ T

t

∣∣p1(s) − p2(s)
∣∣ds.

We consider the family of equivalent norms on L1([0, T ];R
n∗)

‖v‖1,K := ∥∥t �→ e−K(T −t)v(t)
∥∥

1 (K ≥ 0). (155)

Then

∥∥Θ(p1) − Θ(p2)
∥∥

1,K
≤ C(1 + T )

∫ T

0

∫ T

t

e−K(T −t)
∣∣p1(s) − p2(s)

∣∣ds dt

= C(1 + T )

∫ T

0
e−K(T −s)

∣∣p1(s) − p2(s)
∣∣
[∫ s

0
eK(t−s) dt

]
ds

≤ C(1 + T )

K
‖p1 − p2‖1,K .

For K big enough, Θ is a contraction on L1([0, T ];R
n∗) for ‖ · ‖1,K ; its unique fixed

point is the unique solution of (11). �

Another useful result is the following integration by parts formula:

Lemma A.3 Let h, k ∈ BV([0, T ]). Then hl ∈ L1(dk), kr ∈ L1(dh), and
∫

[0,T ]
hl dk +

∫
[0,T ]

kr dh = hT+kT+ − h0−k0− . (156)

Proof Let Ω := {0 ≤ y ≤ x ≤ T }. Since χΩ ∈ L1(dh ⊗ dk), we have by Fubini’s
theorem (Theorem 7.27 in [27]) and Lemma A.1 that hl ∈ L1(dk), kr ∈ L1(dh), and
we can compute dh ⊗ dk(Ω) in two different ways:

dh ⊗ dk(Ω) =
∫

[0,T ]

∫
[y,T ]

dhx dky

=
∫

[0,T ]
(
hT+ − hl

y

)
dky

= hT+(kT+ − k0−) −
∫

[0,T ]
hl

y dky,



34 J Optim Theory Appl (2013) 159:1–40

dh ⊗ dk(Ω) =
∫

[0,T ]

∫
[0,x]

dky dhx

=
∫

[0,T ]
kr
x dhx − k0−(hT+ − h0−). �

A.2 The Hidden Use of Assumption (A3)

We use assumption (A3) to prove Lemma 4.3 (and then Lemma 4.1, . . . ) through the
following:

Lemma A.4 Recall that Mt := DũG
(q)

I ε0 (t)
(t, ūt , ȳt , ū, ȳ) ∈ M|I ε0

t |,m(R), t ∈ [0, T ].
Then MtM

∗
t is invertible and |(MtM

∗
t )−1| ≤ γ −2 for all t ∈ [0, T ].

Proof For any x ∈ R
|I ε0 (t)|,

〈
MtM

∗
t x, x

〉= ∣∣M∗
t x
∣∣2 ≥ γ 2|x|2.

Then MtM
∗
t x = 0 implies x = 0, and the invertibility follows.

Let y ∈ R
|I ε0 (t)| and x := (MtM

∗
t )−1y.

|y||x| ≥ 〈y, x〉 = 〈MtM
∗
t x, x

〉= ∣∣M∗
t x
∣∣2 ≥ γ 2|x|2.

For y �= 0, we have x �= 0; dividing the previous inequality by |x|, we get

γ 2
∣∣(MtM

∗
t

)−1
y
∣∣≤ |y|.

The result follows. �

Before we prove Lemma 4.3, we define the truncation of an integrable function:

Definition A.1 Given any φ ∈ Ls(J ) (s ∈ [1,∞[ and J interval), we will call the
truncation of φ the sequence φk ∈ L∞(J ) defined for k ∈ N and a.a. t ∈ J by

φk
t :=

{
φt if |φt | ≤ k,

k
φt

|φt | otherwise.

Observe that φk Ls−−−→
k→∞ φ.

Proof of Lemma 4.3 In the sequel we omit z0 in the notations.
(i) Let v ∈ Vs . We claim that v satisfies

Mtvt + Nt

(
z[v]t , v, z[v])= ht for a.a. t ∈ Jl (157)

iff there exists w ∈ Ls(Jl;R
m) such that (v,w) satisfies

{
Mtwt = 0,

vt = M∗
t

(
MtM

∗
t

)−1(
ht − Nt

(
z[v]t , v, z[v]))+ wt,

for a.a. t ∈ Jl. (158)
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Clearly, if (v,w) satisfies (158), then v satisfies (157). Conversely, suppose that
v satisfies (157). With Lemma A.4 in mind, we define α ∈ Ls(Jl;R

|Il |) and
w ∈ Ls(Jl;R

m) by

α := (MM∗)−1
Mv,

w := (Im − M∗(MM∗)−1
M
)
v.

Then {
Mw = 0,

v = M∗α + w,
on Jl. (159)

We derive from (157) and (159) that

MtM
∗
t αt + Nt

(
z[v]t , v, z[v])= ht for a.a. t ∈ Jl.

Using again Lemma A.4 and (159), we get (158).
(ii) Given (v,h,w) ∈ Vs ×Ls(Jl;R

|Il |)×Ls(Jl;R
m), there exists a unique ṽ ∈ Vs

such that
{

ṽ = v on J0 ∪ · · · ∪ Jl−1 ∪ Jl+1 ∪ · · · ∪ Jκ,

ṽt = M∗
t

(
MtM

∗
t

)−1(
ht − Nt

(
z[ṽ]t , ṽ, z[ṽ]))+ wt for a.a. t ∈ Jl,

(160)

Indeed, one can define a mapping from Vs to Vs , using the right-hand side of (160).
Then it can be shown, as in the proof of Lemma 2.1, that this mapping is a contraction
for a well-suited norm, using Lemmas 2.2, 2.3, and A.4. The existence and unique-
ness follow. Moreover, a version of the contraction mapping theorem with parameter
(see, e.g., Théorème 21-5 in [28]) shows that ṽ depends continuously on (v,h,w).

(iii) Let us prove (a): let (h̄, v) ∈ Ls(Jl;R
|Il |) × Vs , and let w := 0. Let ṽ ∈ Vs be

the unique solution of (160) for (v, h̄,w). Then ṽ is a solution of (112) by (i).
(iv) Let us prove (b): let (h̄, v̄) ∈ Ls(Jl;R

|Il |) × Vs as in the statement, and let w̄

be given by (i). Then v̄ is the unique solution of (160) for (v̄, h̄, w̄).

Let (hk, vk) ∈ L∞(Jl;R
|Il |) × U, k ∈ N, be such that (hk, vk)

Ls×Ls−−−−→ (h̄, v̄), and
let wk ∈ L∞(Jl;R

m), k ∈ N, be the truncation of w̄. It is obvious from Definition A.1
that

Mtw
k
t = 0 for a.a. t ∈ Jl.

Let ṽk ∈ U be the unique solution of (160) for (vk, hk,wk), k ∈ N. Then, by the
uniqueness and continuity in (ii),

ṽk Ls−→ v̄, (161)

and ṽk is a solution of (114) by (i). �

We finish this section with an example where assumption (A3) can be satisfied or
not.
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Example A.1 We consider the scalar Example 2.1.2 with q = 1 and f (t, s) =
f (2t − s):

yt =
∫ t

0
f (2t − s)us ds, t ∈ [0, T ], (162)

where f is a continuous function and is not a polynomial, and the trajectory
(ū, ȳ) = (0,0). Then

Mt = f (t) ∈ M1,1(R),

and (A3) is satisfied iff

f (t) �= 0 ∀t ∈ [0, T ].

A.3 Approximations in Wq,2

We will prove in this section Lemmas 4.2 and 4.6. First, we give the statement and
the proof of a general result:

Lemma A.5 Let x̂ ∈ Wq,2([0,1]). For j = 0, . . . , q − 1, we denote
{

α̂j := x̂(j)(0),

β̂j := x̂(j)(1),
(163)

and we consider αk
j ,β

k
j ∈ R

q , k ∈ N, such that (αk
j , β

k
j ) −→ (α̂j , β̂j ). Then there

exists xk ∈ Wq,∞([0,1]), k ∈ N, such that xk Wq,2−−−→ x̂ and, for j = 0, . . . , q − 1,
⎧⎨
⎩
(
xk
)(j)

(0) = αk
j ,(

xk
)(j)

(1) = βk
j .

(164)

Proof Given u ∈ L2([0,1]), we define xu ∈ Wq,2([0,1]) by

xu(t) :=
∫ t

0

∫ s1

0
· · ·
∫ sq−1

0
u(sq)dsq dsq−1 · · · ds1, t ∈ [0,1].

Then x
(q)
u = u and, for j = 0, . . . , q − 1,

x
(j)
u (1) = γj ⇐⇒ 〈aj , u〉L2 = γj ,

where aj ∈ C([0,1]) is defined by

aj (t) := (1 − t)q−1−j

(q − 1 − j)! , t ∈ [0,1].

Indeed, a straightforward induction shows that

x
(j)
u (1) =

∫ 1

0

∫ sj+1

0
· · ·
∫ sq−1

0
u(sq)dsq dsq−1 · · · dsj+1.
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Then integrations by parts give the expression of the aj . Note that the
aj (j = 0, . . . , q − 1) are linearly independent in L2([0,1]). Then

A : R
q −→ L2

([0,1])⎛
⎜⎝

λ0
...

λq−1

⎞
⎟⎠ �−→

q−1∑
j=0

λjaj

is such that A∗A is invertible (here A∗ is the adjoint operator), and

x
(j)
u (1) = γj , j = 0, . . . , q − 1 ⇐⇒ A∗u = (γ0, . . . , γq−1)

T . (165)

Going back to the lemma, let û := x̂(q) ∈ L2([0,1]). Observe that

x̂(t) =
q−1∑
l=0

α̂l

l! t l + xû(t), t ∈ [0,1],

and that A∗û = (γ̂0, . . . , γ̂q−1)
T , where

γ̂j := β̂j −
q−1∑
l=j

α̂l

(l − j)! , j = 0, . . . , q − 1.

Then we consider, for k ∈ N, the truncation (Definition A.1) ûk ∈ L∞([0,1]) of û

and

γ k
j := βk

j −
q−1∑
l=j

αk
l

(l − j)! , j = 0, . . . , q − 1, (166)

γ k := (γ k
0 , . . . , γ k

q−1

)T
,

uk := ûk + A
(
A∗A

)−1(
γ k − A∗ûk

)
,

xk(t) :=
q−1∑
l=0

αk
l

l! t l + xuk (t), t ∈ [0,1]. (167)

It is clear that uk ∈ L∞([0,1]) (by the definition of A); then xk ∈ Wq,∞([0, T ]).
Since A∗uk = γ k and in view of (165), (166), and (167), (164) is satisfied. Finally,
γ k
j −→ γ̂j , for j = 1 to q − 1; then γ k −→ A∗û and uk −→ û. �

We can also prove the following:

Lemma A.6 Let x̂ ∈ Wq,2([0,1]) be such that x̂(j)(0) = 0 for j = 0, . . . , q −1. Then

for δ > 0, there exists xδ ∈ Wq,∞([0,1]) such that xδ Wq,2−−−→
δ→0

x̂ and

xδ = 0 on [0, δ]. (168)
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Proof We consider uδ ∈ L∞([0,1]), δ > 0, such that uδ = 0 on [0, δ] and

uδ L2−−→
δ→0

û := x̂(q). Then we define xδ := xuδ (see the previous proof). �

Now the proof of Lemma 4.6 is straightforward.

Proof of Lemma 4.6 We observe that b̄i = 0 on Ii implies that b̄
(j)
i = 0 at the end

points of Ii for j = 0, . . . , qi − 1 (note that with the definition (68), if one compo-
nent of Ii is a singleton, then qi = 1). Then the conclusion follows with Lemma A.6
applied on each component of Iε

i \ Ii . �

Finally, we use Lemma A.5 to prove Lemma 4.2.

Proof of Lemma 4.2 In the sequel we omit z0 in the notations. We define a connection
in Wq,∞ between ψ1 at t1 and ψ2 at t2 as any ψ ∈ Wq,∞([t1, t2]) such that

⎧⎨
⎩

ψ(j)(t1) = ψ
(j)

1 (t1),

ψ(j)(t2) = ψ
(j)

2 (t2),
j = 0, . . . , q − 1.

(a) We define b̃i on [0, t0] by b̃i := g′
i (ȳ)z[v], i = 1, . . . , r . We need to explain

how we define b̃i on ]t0, T ], using b̄i and connections, to have b̃i ∈ Wqi,s([0, T ])
and b̃i = b̄i on each component of Iε

i ∩ ]t0, T ]. The construction is slightly different
whether t0 ∈ Iε

i or not, i.e., whether i ∈ I ε
t0

or not. Note that by the definition of ε0

and of t0, I ε
t is constant for t in a neighborhood of t0. We now distinguish the two

cases just mentioned:

1. i ∈ I ε
t0

: We denote by [t1, t2] the connected component of Iε
i such that t0 ∈ ]t1, t2[.

We derive from (105) that b̃i = b̄i on [t1, t0]. Then we define b̃i := b̄i on ]t0, t2].
If Iε

i has another component in ]t2, T ], we denote the first one by [t ′1, t ′2]. Let
ψ be a connection in Wqi,∞ between b̃i at t2 to b̄i at t ′1. We define b̃i := ψ on
]t2, t ′1[, b̃i := b̄i on [t ′1, t ′2], and so forth on ]t ′2, T ].

If Iε
i has no more component, we define b̃i on what is left as a connection in

Wqi,∞ between b̄i and g′
i (ȳ)z[v] at T .

2. i �∈ I ε
t0

: If Iε
i has a component in [t0, T ], we denote the first one by [t1, t2]. Note

that t1 − t0 ≥ ε0 − ε > 0. We consider a connection in Wqi,∞ between b̃i at t0 and
b̄i at t1 and continue as in 1.

If Iε
i has no component in [t0, T ], we do as in 1.

(b) For all k ∈ N, we apply (a) to (bk, vk), and we get b̃k . We just need to explain
how we can get, for i = 1, . . . , r ,

b̃k
i

Wqi ,2−−−→
k→∞ g′

i (ȳ)z[v̄].



J Optim Theory Appl (2013) 159:1–40 39

By construction we have

on [0, t0], b̃k
i = g′

i (ȳ)z
[
vk
]−→ g′

i (ȳ)z[v̄],
on Iε

i , b̃k
i = bk

i −→ b̄i = g′
i (ȳ)z[v̄].

Then it is enough to show that every connection which appears when we apply (a) to
(bk, vk), for example, ψk

i ∈ Wqi,∞([t1, t2]), can be chosen in such a way that

ψk
i −→ g′

i (ȳ)z[v̄] on [t1, t2].
This is possible by Lemma A.5. �
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