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1 Introduction

Variational problems subject to a convexity constraint arise in several different contexts
such as mathematical economics [30], Newton’s least resistance problem [7,8,20],
optimal transport for the quadratic cost [6] or shape optimization [9,21]. Existence of
minimizers is generally not an issue since the set of convex functions have good local
compactness properties in most reasonable functional spaces. However, on the one
hand, the convexity constraint makes it difficult to write optimality conditions in the
form of a tractable Euler–Lagrange PDE (see [22]) which could be used for instance to
derive regularity results (see [13]).On the other hand, handling the convexity constraint
numerically in a consistent and efficient way is also a challenging problem which has
received a lot of attention in the last fifteen years. Choné and Le Meur [15] have first
identified specificdifficulties, oneofwhichbeing that one cannot use conformal convex
finite-elements since they form, as the meshsize vanishes, a set of functions which is
not (by far!) dense in the set of convex functions. From this negative result, a lot of
proposals have been made: use of interpolates of convex functions [14], supporting
hyperplanes [18], finite-differences and semi-definite programming for nonnegativity
of the Hessian [1], polyhedral approximation and directional convexity in the spirit of
wide stencils for nonlinear PDEs [29], splitting of the directional convexity constraints
and proximal algorithms [25]…Whatever method is used, some subtle tradeoff has to
bemade between provable convergence, accuracy and the computational cost resulting
from the number of convexity constraints enforced at the discretized level (typically
O(N 2) with an N points grid). A major breakhtrough (for two dimensions) has been
made recently byMirebeau [26] who introduced a hierarchy of subcones of the cone of
interpolates of convex functions and an adaptative refinement strategy leading typically
on a grid with N points to essentially only O(N ln2(N )) convexity constraints.

It turns out that in optimal transport (for non quadratic transportation costs) and in
principal-agent problems in economics (see Sect. 2 for a brief presentation), the case
of the convexity constraint is somehow special and corresponds to a very particular
choice of the transport cost (quadratic) or of the valuation function (bilinear). The
general form of the principal-agent problem typically involves a (valuation) function
b of two variables x and y (in R

d , say) and the relevant constraint on the admissible
functions is that they are b-convex (a b-convex function is a function u of the variable
x which can be written as a supremum of the form u(x) = supy{b(x, y) − v(y)}
so that when b is the scalar product, we recover the convexity constraint). One then
has to minimize a certain integral functional among b-convex functions; general exis-
tence results can be proved but not much more in general and this has been a serious
limitation for understanding principal-agent models in several dimensions. It is only
recently with the pathbreaking work of Figalli et al. [19] that some conditions (inti-
mately related to the conditions of Ma et al. [24] for the regularity of optimal transport
maps) were identified to make the principal-agent problem a convex program and,
in the first place, the set of b-convex functions a convex set (see Sect. 4 below for
an elementary presentation in a special case). This raised the hope to use convex
optimization algorithms to solve numerically some convex minimization problems
posed over the set of b-convex functions, provided it is convex. To the best of our
knowledge, the present paper is the first one which addresses b-convexity numeri-
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cally (even for a quite resticted class of b). What makes the analysis of Figalli et
al. amenable to a computational approach is that, under some conditions detailed in
Sect. 3, the fact that u is b-convex and that q = ∇u can be rewritten as a single
condition:

u(x ′) − u(x) ≥ �b(x
′, x, q(x)), ∀x ′, x,

for a certain function �b depending (in a somehow indirect way) on the primitive
datum b and which, provided it is convex in its last argument, immediately implies
convexity of the set of b-convex functions. Now, discretizing this constraint on an
N -points grid gives N 2 convex constraints. We will restrict ourselves to projection
problems, i.e., quadratic minimization problems, so that, once discretized on a grid
with N points, we face a projection on the intersection of convex sets, each of whom
being given by one of the constraints above corresponding to two grid points x ′ and
x . This can be solved with Dykstra’s iterative projection algorithm (see the original
papers by Dyskstra [17] for the case of convex cones, Boyle and Dykstra [5] for
general closed convex sets; see also the extension to general Bregman projections
by Bauschke and Lewis [3] or to monotone operators by Bauschke and Combettes
[2], Combettes [16]). Each step of the algorithm consists in a projection onto only
one of the convex sets; if these elementary projections are easy (it depends on the
complexity and geometry of �b, note that they are explicit in the case of the convexity
constraint), Dykstra’s algorithm can effectively be used even if it is computationally
costly.

In the case of the convexity constraint, the use of Dykstra’s iterative projection
algorithm is not really competitive with most of the approaches recalled above. Nev-
ertheless, as far as we know, it is the only one which can be quite directly adapted
to the case of the b-convexity constraint. It is also worth noting that our numerical
approach presents some similarities with the one of Ekeland and Moreno-Bromberg
[18] in the sense that it replaces finite families of supporting hyperplanes by finite fam-
ilies of graphs of the nonlinear functions �b(., x j , q j ). It also shares at least in spirit
some similarities with the method of Mérigot and Oudet [25]: both methods somehow
split the huge number of constraints into smaller subsets on which projections can be
performed quickly.

The paper is organized as follows. In Sect. 2, we motivate the study of variational
problems with a b-convexity constraint by the principal-agent problem in economics.
Section 3 recalls the structural conditions of Figalli et al. under which b-convex func-
tions form a convex set and thanks to which existence and uniqueness of a minimizer
can be established. In Sect. 4, we specify a particular class of b satisfying the condi-
tions of Figalli et al. which can be seen as perturbations of the scalar product and for
which we give an elementary and self-contained presentation. In Sect. 5, we restrict
ourselves even further to the case of quadratic objectives, i.e., to projection problems,
and give some examples, in particular related to envelope computations. In Sect. 6 we
prove a convergence result for discretization of these projection problems. Section 7
explains how to use Dykstra’s algorithm in this context. Finally, numerical results are
presented in Sect. 8.
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2 Motivations

2.1 The Principal-Agent Problem

To motivate variational problems with a b-convexity constraint, let us start by an
informal description of the so-called principal-agent problem in economics. Let us
consider a population of heterogeneous agents, each of whom has some vector of
characteristics x in the sense that an agent with type x derives a utility b(x, y)− p from
consuming a good of type y for the price p. The set of possible agents types is denoted
X , the set of possible goods types is denoted Y and b is a given function from X×Y →
R.We nowconsider amonopolist (the principal), proposing to the population of agents
a contract menu that is a pair of functions x ∈ X �→ (y(x), p(x)) ∈ Y ×R specifying
for each type of agent x the good and the price intended for her. The monopolist
cannot observe directly the characteristics of agents, so the contract menu should
be consistent with the fact that (y(x), p(x)) is really prefered by type x ; this is the
so-called incentive-compatibility condition:

b(x, y(x)) − p(x) ≥ b(x, y(x ′)) − p(x ′), ∀x, x ′. (2.1)

Moreover the agents have access to an outside option given by a fixed pair (y0, p0)
and thus accept a contract from the monopolist only if

b(x, y(x)) − p(x) ≥ u0(x) := b(x, y0) − p0, ∀x . (2.2)

The aim of the monopolist is then to minimize his total cost, which is given by an
expression of the form

∫
X

φ(x, p(x), y(x))dx,

over the (y(.), p(.)) satisfying conditions (2.1) and (2.2). For instance, φ can be
given by φ(x, p, y) = (c(y) − p)ρ(x) where c(y) is the production cost of y and
ρ represents the density of agents types, but other models are possible. Defining
u(x) := b(x, y(x)) − p(x) for every x , we see that the incentive-compatibility con-
dition can be rewritten as:

u(x ′) − u(x) ≥ b(x ′, y(x)) − b(x, y(x)), ∀x, x ′. (2.3)

Condition (2.3) of course imposes sharp restictions on the functionu. Firstly, it imposes
a global shape restriction, namely that u(.) is a supremum of functions of the form
b(., y)−p: this is the b-convexity constraint on u. Condition (2.3) can also be rephrased
by saying that u(.) − b(., y(x)) is minimized at x so that if b is differentiable and u is
differentiable at x (and in fact, there are well-known conditions on b which guarantee
a priori that b-convex functions are differentiable at least almost everywhere, see Sect.
3) then one obtains that ∇u(x) = ∂xb(x, y(x)) which is a local necessary condition
for (2.3) to hold. If we go one step further, as was done in the seminal work of Figalli et
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al. [19], by assuming that the relation q = ∂xb(x, y) can be inverted in the sense that
q = ∂xb(x, y) ⇐⇒ y = yb(x, q) for some map yb, then one can actually deduce
y(x) from the knowledge of q(x) := ∇u(x) by the relation y(x) = yb(x, q(x)).
Replacing y(x) by yb(x, q(x)) in (2.3) and defining �b(x ′, x, q) := b(x ′, yb(x, q))−
b(x, yb(x, q)), we obtain the following reformulation of the incentive-compatibility
constraint:

u(x ′) − u(x) ≥ �b(x
′, x, q(x)), ∀x, x ′. (2.4)

Note that (2.4) implies that, ifu is differentiable at x , then∇u(x) = ∂xb(x, yb(x, q(x)),
i.e., q(x) = ∇u(x) so that constraint (2.4) encodes the relation q = ∇u. Using
the variables (q, u) instead of (y, p) (so that p(x) = b(x, y(x)) − u(x) and
q(x) = ∂xb(x, y(x)), y(x) = yb(x, q(x))), the monopolist’s program rewrites

inf
(u,q)

∫
X
L(x, u(x), q(x))dx

subject to u ≥ u0 and (2.4), with L(x, u, q) := φ(x, b(x, yb(x, q)) − u, yb(x, q)).
Of course, a crucial role is played here by the map yb but also by the function
�b(x ′, x, q) := b(x ′, yb(x, q)) − b(x, yb(x, q)) which appears in the right-hand side
of the incentive-compatibility condition written in the form (2.4).

2.2 The Case of the Convexity Constraint

Variational problems subject to a convexity constraint arise in different applied
settings: economics with Rochet–Choné model [30] (which corresponds to the
principal-agent problem with a bilinear b), but also Newton’s least resistance problem
(see [7,8,20]).We shall also see in Sect. 5 how to relate such variational problems with
the computations of convex envelopes, a problemwith its own interest. Such problems
consist in minimizing, given a convex domain X of Rd , an integral functional of the
form

∫
X L(x, u(x),∇u(x))dx among convex functions. This is in fact equivalent to

minimize
∫
X L(x, u(x), q(x))dx subject to the constraint

u(x ′) − u(x) ≥ (x ′ − x) · q(x), ∀x ′, x

which automatically implies convexity of u as well as q ∈ ∂u hence q = ∇u
a.e.. In other words, the constraints that u is convex and q = ∇u are a particular
case of the non-local condition (2.4) with b(x, y) = x · y so that yb(x, q) = q
and �b(x ′, x, q) = (x ′ − x) · q. The idea of writing the convexity constraints in
this way for numerical purposes was first used by Ekeland and Moreno-Bromberg
[18].
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3 Existence and Uniqueness

Let us now consider the following assumptions:

(A1) b ∈ C1(X × Y ) where X and Y are open subsets of Rd with X convex and
bounded, and b is uniformly semiconvex with respect to x , i.e., there exists
λ ≥ 0 such that for every y ∈ Y , x �→ b(x, y) + λ

2 |x |2 is convex on X ,
(A2) b is twisted (or satisfies the generalized Spence–Mirrlees condition), i.e., for

every x ∈ X , y �→ ∂xb(x, y) is a diffeomorphism from Y to Qx := ∂xb(x, Y ),
the set Qx is closed and convex, and its graph Graph(Q) := {(x, q) ∈ R

d ×
R
d , x ∈ X , q ∈ Qx } is closed; this enables one to define the map yb on

Graph(Q) by

y = yb(x, q) ⇐⇒ ∂xb(x, y) = q.

(A3) For all (x ′, x) ∈ X
2
the map

q ∈ Qx �→ �b(x
′, x, q) := b(x ′, yb(x, q)) − b(x, yb(x, q)), (3.1)

is convex and continuous on Qx .

Assumption (A1) ensures that every (finite) b-convex function u is semi-convex and
therefore:

• u is subdifferentiable at every point, i.e., for every x ∈ X ,

∂u(x) := {q ∈ R
d : u(x + h) ≥ u(x) + q · h + o(h)} �= ∅.

• u is differentiable at every point except possibly a set of Hausdorff dimension at
most d − 1 (hence of zero measure).

The general form of the variational problems we are interested in is:

inf
(u,q)

J (u, q) :=
∫
X
L(x, u(x), q(x))dx (3.2)

subject to

q(x) ∈ Qx , for a.e. x ∈ X, (3.3)

and

u(x ′) − u(x) ≥ �b(x
′, x, q(x)), for a.e. x ∈ X and all x ′ ∈ X, (3.4)

where �b is defined by (3.1). Note that inequality (3.4) is an equality when x ′ = x
so, under assumption (A2), whenever u is differentiable at x , we have q(x) = ∇u(x).
Thanks to assumption (A3), first outlined by Figalli et al. [19], the constraint (3.4) is
convex in (u, q) (equivalently in (u,∇u)); if, in addition L(x, ·, ·) is convex, then the
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minimization problem (3.2)–(3.4) is a convex program. Therefore we have the fol-
lowing well-posedness result (existence essentially follows from [10] and uniqueness
from [19]; for the sake of completeness we give a short proof).

Theorem 3.1 Assume that

• b satisfies (A1), (A2) and (A3),
• L is a lsc integrand such that, for a.e. x, (u, q) ∈ R× Qx �→ L(x, u, q) is strictly
convex, and it satisfies for some C > 0 the coercivity condition

L(x, u, q) ≥ C(|u| + |q| − 1), for a.e. x ∈ X and all (u, q) ∈ R × Qx , (3.5)

• there exists (u0, q0) satisfying (3.4)–(3.3) such that J (u0, q0) < +∞.

Then the problem (3.2)–(3.4) admits a unique solution.

Proof Let (un, qn) be a minimizing sequence for (3.2)–(3.4). By (3.5), (un)n is
bounded in W 1,1(X). Since the functions (un) are all λ-convex (with the same λ),
taking a subsequence if necessary, we may assume that un converges locally uni-
formly to some λ-convex u and qn = ∇un converges to q := ∇u a.e. (see for instance
[11]). Then by Fatou’s Lemma, we deduce that J (u, q) is the infimum of the problem
(3.2)–(3.4). Note that for a.e. x , q(x) ∈ Qx since this set is closed. It remains to show
that (u, q) satisfies the constraint (3.4), but this is obvious by passing to the limit in
the inequality

un(x
′) − un(x) ≥ �b(x

′, x, qn(x))

which holds for all x ′, all n and all x in a set of full measure on which we may further
assume thatqn(x) converges toq(x). This shows existence; uniqueness directly follows
from the convexity of the constraints and the strict convexity of J . ��

To show consistency of discrete approximations in Sect. 6, we shall need the fol-
lowing elementary result:

Lemma 3.2 Assume that b satisfies (A1) and (A2). Then for all (x, x ′, x̄) ∈ X
3
and

q̄ ∈ Qx̄ , one has

yb(x̄, q̄) = yb(x, ∂xb(x, yb(x̄, q̄))), (3.6)

and

�b(x
′, x̄, q̄) − �b(x, x̄, q̄) = �b(x

′, x, ∂xb(x, yb(x̄, q̄))). (3.7)

Proof Let q := ∂xb(x, yb(x̄, q̄)). By definition, ∂xb(x, yb(x, q)) = q, which implies
yb(x, q) = yb(x̄, q̄) (i.e., proves (3.6)) since b is twisted. Then (3.7) immedi-
ately follows since �b(x ′, x̄, q̄) − �b(x, x̄, q̄) = b(x ′, yb(x̄, q̄)) − b(x, yb(x̄, q̄)) =
b(x ′, yb(x, q)) − b(x, yb(x, q)) = �b(x ′, x, q). ��
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4 A Tractable Specification for b

Checking assumption (A3) directly on b is not easy in practice since it involves yb
via �b. There are however (a few) known examples, which can be found in [19],
in connection with the seminal work of Ma et al. [24] on the regularity of optimal
transport maps. For the sake of tractability, we shall restrict ourselves to a class of
particular b for which computations can be performed explicitly up to a certain point.
Namely, from now on, we will only consider perturbations of the scalar product. More
precisely, we consider the following specification:

(B1) b is of the form

b(x, y) := x · y + f (x)g(y) (4.1)

with ( f, g) ∈ C1(X) × C1(Rd) where X is an open bounded convex subset of
R
d (here Y = R

d ), f and g are convex, g ≥ 0, and

inf
(x,y)∈X×Rd

∇ f (x) · ∇g(y) =: κ > −1. (4.2)

Note that (4.2) is trivially satisfied in the following two cases:

• if g is Lipschitz on R
d and ‖∇ f ‖L∞(X)‖∇g‖L∞(Rd ) < 1;

• if ∇ f (x) · ∇g(y) = 0 for all (x, y) ∈ X × R
d (which is in particular the case if

for instance f (x) = f (x1) and g(y) = g(y2, . . . , yd)).

It is known that suitable perturbations of the scalar product of the form (4.1) satisfy
the convexity assumption (A3) (see [19,23,24]). We shall give in the next paragraph
an elementary and self-contained proof as well as some properties of yb and �b under
assumption (B1) (which is slightly weaker than the one considered in the previous
references).

4.1 Properties of yb and �b

Note first that (A1) is satisfied with λ = 0 since f is convex and g ≥ 0, therefore
b-convex functions are convex as suprema of convex functions. Next, given (x, q) ∈
X × R

d , y = yb(x, q) is obtained by solving

y = q − g(y)∇ f (x),

or equivalently by solving the scalar equation

λ − g(q − λ∇ f (x)) = 0 (4.3)

and setting y = q − λ∇ f (x); (4.3) has a unique nonnegative root since its left-hand
side, as a function of λ, has derivative not less than 1 + κ > 0 by (4.2) and value
−g(q) ≤ 0 for λ = 0. This shows that (A2) holds with Qx = R

d . Moreover,
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yb(x, q) = q − gb(x, q)∇ f (x) (4.4)

where

gb(x, q) := g(yb(x, q)) (4.5)

is the unique root of (4.3). Thanks to (4.2), one readily checks that

0 ≤ gb(x, q) ≤ g(q)

1 + κ
. (4.6)

By (4.2), (4.6) and the fact that g is locally Lipschitz, one also deduces that for any
compact subset K ofRd there exists a positive constantCK such that, for all x, x ′ ∈ X̄
and q, q ′ ∈ K ,

|gb(x, q) − gb(x
′, q ′)| ≤ CK (|q − q ′| + |∇ f (x) − ∇ f (x ′)|). (4.7)

which implies the continuity of gb, as well as that of yb and �b by (4.4). Let us now
check that the convexity assumption (A3) is satisfied. By direct computation,

�b(x
′, x, q) = (x ′ − x) · q + D f (x

′, x)gb(x, q)

where D f is the Bregman divergence associated to f :

D f (x
′, x) := f (x ′) − f (x) − ∇ f (x) · (x ′ − x),

which is nonnegative since f is convex. The convexity of �b with respect to q thus
amounts to showing that gb(x, q) is convex with respect to q, which can be done as
follows. Let (x, q0, q1, t) ∈ X × R

d × R
d × [0, 1], and set qt := (1 − t)q0 + tq1,

λ0 := gb(x, q0), λ1 := gb(x ′, q ′), and λt = (1 − t)λ0 + tλ1. Then gb(x, qt ) is the
root of λ �→ λ − g(qt − λ∇ f (x)), which is increasing with respect to λ by (4.2) and
nonnegative at λ = λt by convexity of g. We deduce that gb(x, qt ) ≤ λt , which shows
that (A3) is satisfied.

Recall that ifu isb-convex, then it is convexhencedifferentiable a.e. on X .Moreover
if we denote by A ⊂ X the set of points at which u is differentiable, then ∇u is
continuous on A (see [31]). The constraints that u is b-convex and q = ∇u can be
expressed as

u(x ′) − u(x) ≥ �b(x
′, x, q(x)), ∀(x ′, x) ∈ X × A.

Now if x ∈ X\A, one can choose a sequence xn in A, remaining away from ∂X
and converging to x . Since u is locally Lipschitz, we may further assume that the
bounded sequence qn := ∇u(xn) converges to some q . Up to redefining q at x by
setting q(x) = q , and using the fact that �b is continuous, we see that there is no loss
of generality in imposing that the inequality u(x ′) − u(x) ≥ �b(x ′, x, q(x)) actually
holds for every (x ′, x) ∈ X2.
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4.2 Further Specification for the Numerical Examples

We will consider in our simulations (Sect. 8) a special case where gb (and thus yb and
�b) can be explicitly computed. This special case is given by

g(y) :=
√
1 + |y|2

and f any C1 convex function with Lipschitz constant on X strictly less than 1 (for
instance f (x) = √

1 + |x |2 in our simulations). In this case, the solution gb(x, q) to
(4.3) is the unique positive root of the quadratic equation

λ2 = 1 + |q − λ∇ f (x)|2,

and thus has the following explicit expression

gb(x, q) =
[
(q,∇ f (x))2 + (1 − |∇ f (x)|2)(1 + |q|2)]1/2 − q · ∇ f (x)

1 − |∇ f (x)|2 .

Note that explicit expressions are also obtained for any f and g satisfying (4.2) with
∇ f (x) ·∇g(y) = 0 for all (x, y) ∈ X ×R

d . Indeed, in this case, λ �→ g(q−λ∇ f (x))
is constant hence gb(x, q) = g(q). This is in particular the case when f (x) = f (x1)
and g(y) = g(y2, . . . , yd).

5 A Tractable Specification for L

We have addressed in Sect. 4 the choice of a tractable class of b so that conditions
(A1), (A2) and (A3) are satisfied. To make the problem (3.2) tractable numerically,
we shall restrict ourselves to projection problems, i.e., to quadratic Lagrangians L .
From now on, we assume that b is a perturbation of the scalar product of the form
(4.1) which satisfies assumption (B1), and we consider the quadratic problem

inf
(u,q)

J (u, q) :=
∫
X

(α(x)

2
|q(x) − q0(x)|2 + β(x)

2
|u(x) − u0(x)|2

)
dx (5.1)

subject to

u(x ′) − u(x) ≥ �b(x
′, x, q(x)), ∀(x ′, x) ∈ X2, (5.2)

where (u, q) ∈ C(X) ∩ H1(X) × L2(X,Rd) and (u0, q0, α, β) ∈ C(X ,R) ×
C(X ,Rd) × C(X , (0,+∞))2. We denote

Kb := {(u, q) ∈ C(X) ∩ H1(X) × L2(X,Rd) : (u, q)satisfies(5.2)}. (5.3)

We have already seen that if (u, q) ∈ Kb, then necessarily u is b-convex and q = ∇u,
and explained at the end of Sect. 4.1 why the b-convexity constraint can be imposed
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on the whole of X × X . We know from Theorem 3.1 that (5.1)–(5.2) admits a unique
solution which we denote (u, q) = (u,∇u). Of course, there is no particular extra
difficulty in considering additional pointwise convex constraints on u or q such as
u ≥ v, u ≤ v, u = v on ∂X or q ∈ Q with Q a closed convex subset of Rd .

The reason why we consider only quadratic Lagrangians L , i.e., projection prob-
lems, is that we wish to keep numerical computations as simple as possible. It is in
fact possible (but computationally costly) to use Dykstra’s algorithm with general
Bregman distances to address convex but non quadratic Lagrangians, but we leave
this for future research. We may also view the projection problem as a first step to
address more general Lagrangians for instance by a projected gradient method, each
step of which amounts to solving a problem of the form (5.1)–(5.2). We present in
the next paragraphs some examples which, we believe, motivate directly the choice
of a quadratic L . Let us also remark that we require α and β to be everywhere strictly
positive, that is we ask L to be strongly convex in both variables u and q; this is due
to the fact that in Dykstra’s iterative projection algorithm, the condition q = ∇u is
not enforced during the iterations, so to guarantee convergence, this nondegeneracy
condition is necessary.

5.1 Rochet and Choné Principal-Agent Model

In [30], Rochet and Choné considered the principal-agent problem in the case of a
bilinear utility, a quadratic production cost c(y) := 1

2 |y|2 and 0 reservation utility.
The Rochet and Choné problem then consists in the quadratic minimization problem
with a convexity and a nonnegativity constraints:

inf
{ ∫

X

[1
2
|∇u(x)|2 − x · ∇u(x) + u(x)

]
ρ(x)dx : u convex, u ≥ 0

}

which can equivalently be rewritten as

inf
{ ∫

X

[1
2
|q(x)|2 − x · q(x) + u(x)

]
ρ(x)dx : (u, q) ∈ Kb, u ≥ 0

}
(5.4)

with b(x, y) = x ·y and Kb defined by (5.3). This is not exactly a projection problem of
the form (5.1)–(5.2) because there is no explicit term inu2 in (5.4), so in our simulations
we will regularize it adding an extra quadratic term with a (small) parameter ε > 0.
Namely, the regularized version of (5.4) then reads

inf
{ ∫

X

[1
2
|q(x)|2 − x · q(x) + ε

2
u2(x) + u(x)

]
ρ(x)dx : (u, q) ∈ Kb, u ≥ 0

}
,

(5.5)

which corresponds to a projection problem with q0 = x , u0 = −ε−1, α = ρ, β = ερ,
and an additional nonnegativity constraint on u.
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5.2 Convex Envelopes

Let X be a bounded open convex subset of Rd and u0 ∈ C(X) ∩ H1(X), the convex
envelope, u∗∗

0 of u0 is by definition the largest convex function which is pointwise
below u0 in X . Obviously, u∗∗

0 minimizes
∫
X (u − u0)2 among all convex functions

u such that u ≤ u0 in X , but this is not a projection problem of the form (5.1)–
(5.2) because here we have no term in |∇u|2. One could of course regularize this
minimization problem by adding ε

2

∫
X |∇u|2 (we will actually do it to approximate

more general envelopes in the next paragraph). It turns out however that the convex
envelope also minimizes a Dirichlet integral. Indeed, let u be a H1 convex function
such that u ≤ u0 and u = u∗∗

0 on ∂X ; then by convexity of the square and an integration
by parts,

1

2

∫
X

(
|∇u|2 − |∇u∗∗

0 |2
)

≥
∫
X

�u∗∗
0 (u∗∗

0 − u),

and the latter is nonnegative since u ≤ u∗∗
0 , and u∗∗

0 being convex, it has a nonnega-
tive Laplacian. Hence u∗∗

0 is also the minimizer of the Dirichlet integral 1
2

∫
X |∇u|2

among all convex functions which agree with u∗∗
0 on ∂X and are below u0 on X .

Therefore provided that u∗∗
0 = u0 on ∂X , the convex envelope u∗∗

0 can be obtained by
solving

inf
{ ∫

X

α

2
|∇u|2 + β

2
|u − u0|2 : u convex, u ≤ u0, (u − u0)|∂X = 0

}

for every positive constants α and β. Of course, to make this observation relevant in
practice to compute u∗∗

0 , we should already know u∗∗
0 on ∂X . It is however well-known

that u0 = u∗∗
0 on ∂X (equivalently, u0 agrees with a convex function on ∂X ) in the

following cases:

• if ∂X contains no segment, by the following formula for the convex envelope:

u∗∗
0 (x) = inf

{ d+1∑
i=1

λi u0(xi ) : λi ≥ 0, xi ∈ X ,

d+1∑
i=1

λi = 1,
d+1∑
i=1

λi xi = x
}
,

which implies that u∗∗
0 = u0 on ∂X if every boundary point of X is extreme;

• if the dimension d = 1, as a particular case of the previous one;
• if u0 is the sum of a convex function and a function with compact support in X .

It is worthmentioning here some purely PDE approaches to the computation of convex
envelopes. Vese [32] showed that the convex envelope can be obtained as the limit for
large time of a solution of a nonlinear parabolic equation (also see [12] for exponential
convergence results) and Oberman [27,28] developed a direct approach based on the
observation that convex envelopes solve a nonlinear elliptic equation.
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5.3 More General Envelopes

Since by definition, b-convex functions are stable by suprema, one can also define
the b-convex envelope of a function u0 as the largest b-convex function below u0. If
b is as in Sect. 4 (or more generally if b(., y) is convex for every y), then b-convex
functions are convex hence subharmonic; the same argument as for convex envelopes
thus enables to conclude that if u0 coincideswith its b-convex envelope on ∂X , then the
b-convex envelope of u0 can also be obtained by the quadratic minimization problem

inf
{1
2

∫
X

α

2
|q|2 + β

2
|u − u0|2 : (u, q) ∈ Kb, u ≤ u0, (u − u0)|∂X = 0

}
. (5.6)

Let us mention two cases where the convex envelope of u0 coincides with u0 on ∂X :

• if u0 is the sum of a b-convex function and a nonnegative function which vanishes
on ∂X ;

• if the dimension d = 1 and u0 has compact support in X (see below).

Lemma 5.1 Assume that b satisfies (B1) with X = (0, 1) and let u0 ∈ Cc((0, 1)).
Then u0 coincides with its b-convex envelope at 0 and 1.

Proof Let ε > 0 be such that u0 = 0 on [0, ε] ∪ [1 − ε, 1]. Let us denote by v the
b-convex envelope of u0; by definition v ≤ u0 up to the boundary of X . To prove
equality at 0 and 1, it is enough to construct a b-convex function w such that w ≤ u0
and w(0) = w(1) = 0. Define w by w(x) := max{w1(x), w2(x)} where

w1(x) := b(x, y1) − b(0, y1), w2(x) := b(x, y2) − b(1, y2),

with y1 < 0 < y2 and |yi | ≥ M , i = 1, 2, with M to be chosen properly. By (4.2),
we have w′

1(x) ≤ y1(1 + κ) + ‖ f ′‖∞|g(0)| ≤ −M(1 + κ) + ‖ f ′‖∞|g(0)| where
κ > −1. Then choosing M large enough, w1(x) ≤ −M

2 (1+ κ)x for every x ∈ [0, 1].
If we further restrict M so that−M

2 (1+κ) < ε−1 min u0, we getw1 ≤ u0. In a similar
way for such an M , we also have w2 ≤ u0. Hence v ≥ w, so that v(0) ≥ w(0) = 0
and v(1) ≥ w(1) = 0. ��

In the general case where one cannot take for granted that u0 coincides with its b-
convex envelope on ∂X , one can still approximate the b-convex envelope by solving
for a small ε > 0 the problem

inf
{1
2

∫
X

ε

2
|q|2 + 1

2
|u − u0|2 : (u, q) ∈ Kb, u ≤ u0

}
. (5.7)

6 Discretization and Convergence

We now address the discretization of (5.1)–(5.2) and our aim in this section is to
prove a �-convergence result. To prove �-convergence, it will be useful to have that
Lipschitz functions are dense in energy for the problem (5.1)–(5.2), which requires
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the extra assumption that g is Lipschitz on R
d (this would not be needed for variants

of (5.1)–(5.2) with additional constraints that bound uniformly q). Note first that
since here b-convex functions are convex, they are locally Lipschitz hence Kb ⊂
W 1,∞

loc (X) × L∞
loc(X). Let (u, q) ∈ Kb, M > 0 and (uM , qM ) be defined by

uM (x ′) := sup
x∈X, |q(x)|≤M

{u(x) + �b(x
′, x, q(x))}, qM := ∇uM . (6.1)

By construction uM is b-convex, uM ≤ u, uM = u on AM := {x ∈ X : |q(x)| ≤ M};
since q is locally bounded, uM converges locally uniformly to u and qM converges to
q almost everywhere. If x /∈ AM , let xn ∈ AM be such that

uM (x) = lim
n

u(xn) + �b(x, xn, q(xn));

since |q(xn)| ≤ M , passing to a subsequence, we may assume that (xn, qn, yn) =
(xn, q(xn), yb(xn, q(xn))) converges to some (x, q, y) with x ∈ X , |q| ≤ M and
y = yb(x, q) since yb is continuous by (4.7). Let now x ′ ∈ X ; since uM (x ′) ≥ u(xn)+
�b(x ′, xn, qn), using the continuity of �b, we get uM (x ′) − uM (x) ≥ �b(x ′, x, q) −
�b(x, x, q), so that if uM is differentiable at x (which is the case almost everywhere),
we necessarily have ∇uM (x) = qM (x) = ∂xb(x, yb(x, q)). Lemma 3.2 thus gives

uM (x ′) − uM (x) ≥ �b(x
′, x, q) − �b(x, x, q) = �b(x

′, x, qM (x)),

so that (uM , qM ) ∈ Kb. Moreover, recalling (4.4) and (4.5), we have

qM (x) = ∂xb(x, yb(x, q)) = yb(x, q) + gb(x, q))∇ f (x)

= q + gb(x̄, q̄)(∇ f (x) − ∇ f (x̄)),

so that by (4.6),

|qM (x)| ≤ |q| + 2‖∇ f ‖L∞(X)

1 + κ
g(q̄). (6.2)

Lemma 6.1 Assume that b satisfies (B1) with the extra assumption that g is Lipschitz
onRd . Let (u, q) ∈ Kb and (uM , qM ) be defined by (6.1). Then there exists a constant
C (independent of M and (u, q)) such that |qM | ≤ C(1+ |q|), which implies that uM

converges to u in H1 as M → +∞ and that the minimum of J over Kb coincides
with its infimum over Kb ∩ (W 1,∞(X) × L∞(X)).

Proof Only the inequality |qM | ≤ C(1 + |q|) has to be shown: the H1 convergence
will directly follow by Lebesgue’s dominated convergence Theorem. If |q(x)| ≤ M ,
there is nothing to prove since qM = ∇uM = ∇u = q a.e. in AM . If |q(x)| > M and
uM is differentiable at x , then by (6.2), the fact that |q| ≤ M and the assumption that
g is Lipschitz, we have |qM (x)| ≤ C(1 + M) ≤ C(1 + |q(x)|) for some constant C .

��
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6.1 Discretization

We now discretize (5.1)–(5.2) as follows. Denoting by λ the Lebesgue measure on X ,
we consider for each discretization parameter h > 0, a finite subset Xh = {xhi , i =
1, . . . , Nh} of X in such a way that the sequence of discrete measures

λh := λ(X)

Nh

Nh∑
i=1

δxhi

approaches λ, i.e.,

λh
∗
⇀ λ as h → 0. (6.3)

We now consider the following discretized version of (5.1)–(5.2):

inf
(uh ,qh)∈Kh

b

J h(uh, qh)

:= λ(X)

Nh

Nh∑
i=1

[
α(xhi )

2
|qhi − q0(x

h
i )|2 + β(xhi )

2
|uhi − u0(x

h
i )|2

]
(6.4)

where

Kh
b := {(uhi , qhi )∈(R×R

d)Nh : uhi − uhj ≥�b(x
h
i , xhj , q

h
j ), ∀(i, j)∈{1, . . . , Nh}2}.

(6.5)

Note that (6.4)–(6.5) is a finite-dimensional projection problem, and under our assump-
tions Kh

b is a closed and convex set so that existence and uniqueness of a minimizer
which we denote by (uh, qh) is straightforward.

Elements of Kh
b can easily be extended to elements of Kb admissible for the con-

tinuous problem as follows:

Lemma 6.2 Given (uh, qh) ∈ Kh
b , let us extend uh to X by setting

uh(x) := max
i=1,··· ,Nh

{uhi + �b(x, x
h
i , qhi )}, ∀x ∈ X .

For each x ∈ X, select an index i among those for which the maximum above is
achieved which minimizes the distance between x and xhi and set

qh(x) := ∂xb(x, yb(x
h
i , qhi )),

so that qh(xhi ) = ∂xb(xhi , yb(xhi , qhi )) = qhi . Then the obtained extension (which by
abusing notations we continue to denote by (uh, qh)) belongs to Kb.
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Proof First observe that (uh, qh) ∈ W 1,∞(X) × L∞(X). Let x ∈ X and let i be an
index for which uh(x) = uhi + �b(x, xhi , qhi ) and qh(x) = ∂xb(x, yb(xhi , qhi )). For
x ′ ∈ X , we have uh(x ′) ≥ uhi + �b(x ′, xhi , qhi ) hence

uh(x ′) − uh(x) ≥ �b(x
′, xhi , qhi ) − �b(x, x

h
i , qhi ) = �b(x

′, x, qh(x))

where the last equality follows from Lemma 3.2. ��
Extending (uh, qh) ∈ Kh

b as in Lemma 6.2, one can write

Jh(uh, qh) =
∫
X
L(x, uh(x), qh(x))dλh(x)

whereas the functional J for the continuous problem is, for all (u, q) ∈ Kb,

J (u, q) =
∫
X
L(x, u(x), q(x))dx

where

L(x, u, q) := α(x)

2
|q − q0(x)|2 + β(x)

2
|u − u0(x)|2, ∀(x, u, q) ∈ X × R × R

d .

6.2 Convergence

This section is devoted to a detailed �-convergence proof. For the �-liminf inequality,
the following result will be useful:

Lemma 6.3 Let (uh, qh) ∈ Kh
b extended as in Lemma 6.2 be such that

sup
h

‖qh‖L2(λh) < +∞. (6.6)

Assume that uh converges uniformly on compact subsets of X to some function u and
that qh converges a.e. to q := ∇u. Then

1. (u, q) ∈ Kb,
2. for every F ∈ Cb(X × R

d), one has

lim
h→0

λ(X)

Nh

Nh∑
i=1

F(xhi , qhi ) = lim
h→0

∫
X
F(x, qh(x))dλh(x) =

∫
X
F(x,∇u(x))dx,

(6.7)

3. the following �-liminf inequality holds:

lim inf
h

J h(uh, qh) ≥ J (u, q). (6.8)
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Proof Let us define the discrete measure γ h on X × X × R
d by γ h := λh ⊗

((id, qh)#λh), i.e., for every F ∈ Cb(X × X × R
d),

∫
X×X×Rd

F(x ′, x, q)dγ h(x ′, x, q) :=
∫
X×X

F(x ′, x, qh(x))dλh(x ′)dλh(x).

The family of measures γ h is tight because its first and second marginals are λh which
satisfies (6.3) and its third marginals have bounded second moments by (6.6). Up to a
subsequence, we may therefore assume that γ h narrowly converges to some measure
γ . Note that γ is necessarily of the form λ ⊗ θ where θ has first marginal λ hence can
be disintegrated as θ(dx, dq) = λ(dx)θ x (dq), so that

lim
h→0

∫
X×X

F(x ′, x, qh(x))dλh(x ′)dλh(x) =
∫
X×X×

( ∫
Rd

F(x ′, x, q)dθ x (q)
)
dx ′dx

for every F ∈ Cb(X × X × R
d). Since (uh, qh) ∈ Kh

b , we have u
h(x ′) − uh(x) ≥

�b(x ′, x, q) γ h-a.e.. Let then ψ ∈ Cc(X × X × R
d) with ψ ≥ 0; since (x ′, x, q) �→

ψ(x ′, x, q)(uh(x ′)−uh(x)−�b(x ′, x, q)) converges uniformly toψ(x ′, x, q)(u(x ′)−
u(x) − �b(x ′, x, q)) and γ h converges narrowly to γ , we have

∫
X×X×Rd

ψ(x ′, x, q)(u(x ′) − u(x) − �b(x
′, x, q))dγ (x ′, x, q) ≥ 0

so that the continuous function u(x ′) − u(x) − �b(x ′, x, q) is nonnegative for every
x ′ ∈ X , a.e. x ∈ X and θ x -a.e. q. If x is a point of differentiability of u, this implies in
particular that q = ∇u(x), so θ x necessarily coincides with the Dirac mass at ∇u(x).
We then have γ = λ ⊗ ((id,∇u)#λ) and the whole family γ h converges narrowly to
γ as h → 0, hence

lim
h→0

λ(X)2

N 2
h

Nh∑
j=1

Nh∑
i=1

F(xhj , x
h
i , qhi ) =

∫
X×X

F(x ′, x,∇u(x))dx ′dx

for every F ∈ Cb(X × X × R
d), which in particular proves that (6.7) holds. Fixing

M > 0, we have by (6.7) and (6.6)

∫
X

α(x)

2
min(M, |∇u(x) − q0(x)|2)dx

≤ lim inf
h

∫
X

α(x)

2
|qh(x) − q0(x)|2dλh(x) ≤ C (6.9)

for some C independent of h. Letting M go to ∞, this shows that q = ∇u ∈ L2

and thus (u, q) ∈ Kb (the b-convexity inequality has already been established). In a
similar way, taking a family of cutoff functionsψk ∈ Cc(X), 0 ≤ ψk ≤ 1 withψk = 1
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on {x ∈ X : dist(x, ∂X) ≥ 1/k} and ψk ≤ ψk+1, using the uniform convergence of
uh to u on compact subsets of X , we get

∫
X

ψk(x)
β(x)

2
(u(x) − u0(x))

2dx ≤ lim inf
h

∫
X

β(x)

2
(uh(x) − u0(x))

2dλh(x).

(6.10)

Passing to the supremum inM in (6.9) and in k in (6.10) finally establishes the�-liminf
inequality (6.8):

lim inf
h

J h(uh, qh) ≥ lim inf
h

∫
X

α(x)

2
|qh(x) − q0(x)|2dλh(x)

+ lim inf
h

∫
X

β(x)

2
(uh(x) − u0(x))

2dλh(x) ≥ J (u, q).

��
Remark 6.4 If in Lemma 6.3 one further assume that uh is uniformly Lipschitz, i.e.,

sup
h

‖qh‖L∞ < +∞,

then the measures γ h in the proof are supported by a fixed compact set and thus one
can use a quadratic-test function in (6.7) which actually gives

∫
X

α(x)

2
|∇u(x) − q0(x)|2dx = lim

h

∫
X

α(x)

2
|qh(x) − q0(x)|2dλh(x).

In a similar way, in this case uh converges uniformly to u in X and we also have

∫
X

β(x)

2
(u(x) − u0(x))

2dx = lim
h

∫
X

β(x)

2
(uh(x) − u0(x))

2dλh(x).

Hence with a uniform bound on qh , the last statement in Lemma 6.3 can be strength-
ened to:

lim
h

J h(uh, qh) = J (u, q).

Theorem 6.5 Assume that b satisfies (B1)with the extra assumption that g is Lipschitz
on R

d . Let (uh, qh) be the solution of (6.4)–(6.5), extended as in Lemma 6.2, and let
(u, q) be the solution of (5.1)–(5.2). Then uh converges locally uniformly to u and qh

converges in L2
loc and a.e. to q as h → 0.

Proof Since (uh, qh) solves (6.4)-(6.5) it is easy to see that there is a constant C such
that, for all h,

‖qh‖L2(λh) + ‖uh‖L2(λh) ≤ C. (6.11)
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We first claim that for every ω convex such that ω ⊂⊂ X ,

sup
h

‖∇uh‖L∞(ω) = Cω < +∞.

Indeed, if it was not the case, using the fact that the all functions uh are convex and
arguing as in the proof of Theorem1 in [14], thiswould imply that, up to a subsequence,
the norm of all elements of ∂uh converge to +∞ uniformly on some open subset of
X , which would also imply a uniform explosion for qh since qh(x) ∈ ∂uh(x), and
thus this would contradict (6.11) and (6.3).

Passing to a subsequence if necessarywemay therefore assume that for someconvex
function u, one has uh → u uniformly on compact subsets of X , qh → q = ∇u
a.e. and in L2

loc. By Lemma 6.3, (u, q) ∈ Kb and J (u, q) ≤ lim infh J h(uh, qh).
To prove that (u, q) = (u, q) (and then that the whole family converges, not only
a subsequence), it is enough by Lemma 6.1 to show that J (u, q) ≤ J (v, p) for
every (v, p) ∈ Kb ∩ (W 1,∞(X) × L∞(X)). Let (v, p) ∈ Kb ∩ W 1,∞(X) × L∞(X),
then extend as in Lemma 6.2 the discrete data (v(xhi ), p(xhi ))i=1,...,Nh and denote
by (vh, ph) this extension. It is easy to check that ph is uniformly bounded and vh

converges uniformly to v, then using Remark 6.4 and the optimality of (uh, qh) we
get

J (u, q) ≤ lim inf
h

J h(uh, qh) ≤ lim inf
h

J h(vh, ph) = J (v, p),

which gives the desired result. ��

7 Numerical Method

7.1 Dykstra’s Iterative Projection Algorithm

We focus on the discretized problem (6.4)–(6.5), where for notational simplicity we
drop the discretization index h and set �i j (q) := �b(xi , x j , q):

inf
(u,q)

N∑
k=1

[
αk

2

∣∣∣qk − q0k

∣∣∣2 + βk

2

∣∣∣uk − u0k

∣∣∣2
]

subject to ui − u j ≥ �i j (q j ), ∀(i, j){1, . . . , N }2.

Defining the convex subsets of RN × R
dN

Ci, j := {
(u, q) : ui − u j ≥ �i j (q j )

}
, ∀(i, j){1, . . . , N }2,

and the weighted squared Euclidean distance in R
N × R

dN

Dα,β

(
(u, q), (u′, q ′)

) :=
N∑

k=1

[
αk

2

∣∣qk − q ′
k

∣∣2 + βk

2

∣∣uk − u′
k

∣∣2
]

,
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the discrete problem is to find the projection Pα,β
C (u0, q0), solution in RN × R

dN to

inf
(u,q)

Dα,β

(
(u, q), (u0, q0)

)
subject to (u, q) ∈ C :=

⋂
(i, j)

Ci, j .

This projection problem can be solved iteratively by Dykstra’s algorithm [3,5]. Let
us now recall it for a projection problem onto a closed convex subset K of Rm which
can be written as an intersection of elementary closed convex subsets K1, . . . , KL of
R
m :

K :=
L⋂

l=1

Kl .

Given z0, we wish to compute Pα,β
K (z0) = argminz∈K Dα,β(z, z0). First extend by

L-periodicity the family of convex sets (Kl)l=1,··· ,L by setting

Kl+kL := Kl , ∀(k, l) ∈ N × {1, . . . , L}.

Then initialize the algorithm by setting

θ−L+1 = · · · = θ−1 = θ0 = 0

and starting from the point z0 we want to project, update zn and θn for n ≥ 1 by:

zn = Pα,β
Kn

(
zn−1 + θn−L

)
, θn = zn−1 − zn + θn−L .

The fact that the sequence zn converges to Pα,β
K (z0) has been established by Boyle and

Dyskstra [5]; Bauschke and Lewis [3] have extended this result to projection problems
with general Bregman distances.

Remark 7.1 For the sake of simplicity, we have omitted above the case of pointwise
convex constraints on u or q such as ui ≥ 0, ui ≤ vi , |qi | ≤ ri , or qi ∈ R

d+. Such
constraints can be handled easily with Dykstra’s algorithm by adding elementary
convex sets on which the projections are totally explicit.

Remark 7.2 The main drawback of Dystra’s algorithm in our context is the a pri-
ori very large number N 2 of elementary convex sets on which we have to project.
One can however significantly reduce the computational cost if C = ∩(i, j)∈I Ci, j

where the cardinality of I ⊂ {1, . . . , N }2 is smaller than N 2. This reduction of
the number of constraints can be done when the b-convexity constraint propagates.
This is in particular the case in dimension 1 under the so-called Spence-Mirrlees
condition ∂2xyb > 0 and for ordered grid points (xi < x j for i < j), where it
is enough to impose the b-convexity on neighbour points ( j = i ± 1), resulting
in a number of elementary convex sets O(N ) instead of O(N 2). It is indeed easy
to see that the constraint propagates in this case: set yi := yb(xi , qi ) and first
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remark that the two “local” constraints ui+1 − ui ≥ b(xi+1, yi ) − b(xi , yi ) and
ui − ui+1 ≥ b(xi , yi+1) − b(xi+1, yi+1) together with Spence-Mirrlees condition
imply that yi+1 ≥ yi ; then summing the two consecutive constraints ui+1 − ui ≥
b(xi+1, yi ) − b(xi , yi ) and ui+2 − ui+1 ≥ b(xi+2, yi+1) − b(xi+1, yi+1) and using
the fact that b(xi+2, yi+1) − b(xi+1, yi+1) ≥ b(xi+2, yi ) − b(xi+1, yi ) again by
Spence–Mirrlees condition and the fact that yi+1 ≥ yi , we obtain that ui+2 − ui ≥
b(xi+2, yi )−b(xi , yi ), which is exactlywhatwemean by propagation of the constraint.

Remark 7.3 In a similar way, for the convexity constraint b(x, y) = x · y,
�b(x ′, x, q) = (x ′ − x) · q and for regular grid points, the number of convexity
constraints ui − u j ≥ (xi − x j ) · q j can be significantly reduced (for instance for
aligned points, it is enough to consider consecutive points xi and x j ). We refer to [14]
and the recent efficient approach of Mirebeau [26] for details.

7.2 Elementary Projections

7.2.1 Lagrangian Relaxation

In Dyskstra’s algorithm, we have to compute at each step an elementary projection
onto a single convexCi, j , P

α,β
Ci , j

(q̂, û) := Pi, j (q̂, û) for various (q̂, û). The elementary
projection (q̄, ū) = Pi, j (q̂, û) is obviously given by q̄k = q̂k for k �= j and ūk = ûk for
k �= i, j with (q̄ j , ūi , ū j ) obtained by solving the low-dimensional projection problem

inf
(ui ,u j ,q j )

[
α j

2

∣∣q j − q̂ j
∣∣2 + βi

2

∣∣ui − ûi
∣∣2 + β j

2

∣∣u j − û j
∣∣2

]

subject to ui − u j ≥ �i j (q j ).

If ûi − û j ≥ �i j (q̂ j ), then this projection problem is trivial and (ūi , ū j , q̄ j ) =
(ûi , û j , q̂ j ), so only the case ûi − û j < �i j (q̂ j ) where the constraint is binding
requires some specific attention and can conveniently be addressed by Lagrangian
relaxation as follows. Since the problem above is convex and qualified (the constraint
is linear in ui and u j ), there is no duality gap with its dual problem, which is

sup
λ≥0

li j (λ)

where li j (λ) is defined, for λ ≥ 0, by

inf
(ui ,u j ,q j )

[
α j

2

∣∣q j − q̂ j
∣∣2 + βi

2

∣∣ui − ûi
∣∣2

+β j

2

∣∣u j − û j
∣∣2 + λ

(−ui + u j + �i j (q j )
) ]

. (7.1)

The dual function li j is concave—as an infimum of affine functions—and
differentiable—since the Lagrange problem (7.1) has a unique solution for any λ ≥ 0,
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that we denote by (q j (λ), ui (λ), u j (λ))—with l ′i j (λ) = −ui (λ)+u j (λ)+�i j (q j (λ)).
Note that ui (λ), u j (λ) are given explicitly by

ui (λ) = ûi + λ

βi
, u j (λ) = û j − λ

β j
, (7.2)

whereas q j (λ) is the unique solution (not explicit in general) to

α j (q j − q̂ j ) + λ∇�i j (q j ) = 0, i.e., q j (λ) =
(
id+ λ

α j
∇�i j

)−1
(q̂ j ). (7.3)

The solution of the projection problem (ūi , ū j , q̄ j ) in the casewhere ûi−û j < �i j (q̂ j )

is then (ui (λ), u j (λ), q j (λ)) where λ > 0 solves

l ′i j (λ) = −ui (λ) + u j (λ) + �i j (q j (λ) = 0. (7.4)

Note that (7.4) is monotone with respect to λ since li j is concave.
In practice, we have experimented two numerical methods to solve the elementary

projection problem in the case λ > 0. The first one is a duality method: it consists in
solving the dual problem via (7.4):

1. Given λ > 0, compute q j (λ) from (7.3) (by Newton’s method if necessary) and
ui (λ), u j (λ) from (7.2) (explicitly).

2. Evaluate l ′i j (λ) = −ui (λ) + u j (λ) + �i j (q j (λ)) and stop if λ is satisfying (7.4)
up to a fixed tolerance.

3. Update λ > 0 by one step of a dichotomy method to solve l ′i j (λ) = 0.

The second method that we have experimented (and actually used for the numerical
results in Sect. 8) is a primal-dual method: it consists in finding simultaneously the
primal-dual solution (q j (λ), ui (λ), u j (λ), λ) to the elementary projection problem
via the optimality conditions for λ > 0. This amounts to computing simultaneously
(q j (λ), λ) as the unique solution to

{
α j

(
q j − q̂ j

) + λ∇�i j (q j ) = 0

−(ûi + λ
βi

) + (û j − λ
β j

) + �i j (q j ) = 0,
(7.5)

by Newton’s method. See e.g., [4] for variants.

7.2.2 Special Cases

In the convexity constraint case, �i j (q) = (xi − x j ) ·q, the solution q j (λ) to Equation
(7.3) is explicitly given by

q j (λ) = q̂ j − λ

α j
(xi − x j ).
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Fig. 1 H1((0, 1)2) projections of −x(1 − x)(2x − 1)2y(1 − y)(2y − 1)2

Plugging it, together with ui (λ), u j (λ) given by (7.2), into the optimality equation
(7.4), we get that the solution to the dual problem when λ > 0 (i.e., when (q̂ j , ûi , û j )

is not feasible for the primal problem) is

λ = −ûi + û j + �i j (q̂ j )

1
βi

+ 1
β j

+ |xi−x j |2
α j

.

Therefore the elementary projections are explicit in this case.
In the b-convexity constraint case with b(x, y) := x · y + f (x)g(y), recall that

�i j (q) = (xi − x j ) · q + D f (xi , x j )gb(x j , q).

When gb is known explicitly (as it is in the special cases described in Sect. 4.2) and
twice differentiable, the elementary projection problems can be solved as explained
above. In practice, we solve (7.5) by Newton’s method initialized with the explicit
solution (q j , λ) to the convexity constraint case. In the more general case where gb is
not known explicitly, one could imagine to solve simultaneously (4.3) to evaluate it
numerically, but we have not explored this way.

8 Numerical Results

We present here various examples of projection problems of the form (5.1)–(5.2)
(sometimes on convex subsets of C corresponding to additional pointwise convex
constraints) and their numerical resolution by the method described in Sects. 6 and
7. Since the main limitation to this method (up to the numerical resolution of (4.3)
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Fig. 3 Envelopes of a function in dimension 1

to get gb) is the fact that �b has to be explicit (very likely yb too), we have restricted
ourselves to two cases for b:

• the bilinear case b(x, y) := x · y, which corresponds to the convexity constraint;
• a perturbation of it given by b(x, y) := x · y+ f (x)g(y)with f (x) := √

1 + |x |2,
g(y) := √

1 + |y|2.
In 3d figures, the z-axis is directed downward.

8.1 H1 Projection on b-Convex Functions

The first example is precisely the projection problem (5.1)–(5.2) with α = β = 1 and
q0 = ∇u0. We have solved numerically such problems in dimension d = 2, see Figs.
1 and 2 for the H1((0, 1)2) projection of two different u0.
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Fig. 5 Rochet and Choné problem regularized with ε = 0.01

8.2 b-Convex Envelopes in Dimension One

We next have computed convex and b-convex envelopes in dimension d = 1 using the
formulation (5.6) (both for convex and b-convex envelopes) with α = β = 1, q0 = 0
and a nonconvex u0 depicted in Fig. 3.

8.3 Approximated b-Convex Envelopes in Dimension Two

We now present two-dimensional approximated convex/b-convex envelopes, using
the regularized formulation (5.7) with different values of the regularization parameter
ε > 0, respresented in Fig. 4.

8.4 Regularized Rochet and Choné problem

We finally consider the Rochet and Choné principal-agent problem on the square
[1, 2]2, regularized as in (5.5) with ε = 0.01, see Fig. 5.
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