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Abstract
We investigate in this work a fully-discrete semi-Lagrangian approximation of second
order possibly degenerate Hamilton–Jacobi–Bellman (HJB) equations on a bounded
domain O ⊂ R

N (N = 1, 2, 3) with oblique derivatives boundary conditions. These
equations appear naturally in the study of optimal control of diffusion processes with
oblique reflection at the boundary of the domain. The proposed scheme is shown to
satisfy a consistency type property, it is monotone and stable. Our main result is the
convergence of the numerical solution towards the unique viscosity solution of theHJB
equation. The convergence result holds under the same asymptotic relation between
the time and space discretization steps as in the classical setting for semi-Lagrangian
schemes on O = R

N . We present some numerical results, in dimensions N = 1, 2,
on unstructured meshes, that confirm the numerical convergence of the scheme.

Mathematics Subject Classification 49L25 · 65M12 · 35K55 · 49L20

B Elisabetta Carlini
carlini@mat.uniroma1.it

Elisa Calzola
calzola@mat.uniroma1.it

Xavier Dupuis
xavier.dupuis@u-bourgogne.fr

Francisco J. Silva
francisco.silva@unilim.fr

1 Dipartimento di Matematica Guido Castelnuovo, “Sapienza”, Università di Roma, 00185 Rome,
Italy

2 Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université Bourgogne
Franche-Comté, 21000 Dijon, France

3 Faculté des Sciences et Techniques, Institut de Recherche XLIM-DMI, UMR 7252 CNRS, Université
de Limoges, 87060 Limoges, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-022-01336-6&domain=pdf


50 E. Calzola et al.

1 Introduction

In this work we deal with the numerical approximation of the following parabolic
Hamilton–Jacobi–Bellman (HJB) equation

∂t u + H
(
t, x, Du, D2u

) = 0 in (0, T ] × O,

L(t, x, Du) = 0 on (0, T ] × ∂O,

u(0, x) = Ψ (x) in O.

(1)

In the system above, T > 0, O ⊂ R
N (N = 1, 2, 3) is a nonempty smooth bounded

open set and H and L are nonlinear functions having the form

H(t, x, p, M) = sup
a∈A

{
−1

2
Tr

(
σ(t, x, a)σ (t, x, a)�M

)
− 〈μ(t, x, a), p〉 − f (t, x, a)

}
,

(2)

L(t, x, p) = sup
b∈B

{〈γ (x, b), p〉 − g(t, x, b)} , (3)

where 〈·, ·〉 denotes the scalar product in RN , A ⊂ R
NA and B ⊂ R

NB are nonempty
compact sets,σ : [0, T ]×O×A → R

N×Nσ , with 1 ≤ Nσ ≤ N ,μ : [0, T ]×O×A →
R

N , f : [0, T ] ×O × A → R, γ : ∂O × V → R
N , with V ⊆ R

NB being an open set
containing B, g : [0, T ] × ∂O × B → R, and Ψ : O → R.

If A = {a} and B = {b}, for some a ∈ R
NA and b ∈ R

NB , and γ (x, b) = n(x),
with n(x) being the unit outward normal vector to O at x ∈ ∂O, then (1) reduces
to a standard linear parabolic equation with Neumann boundary conditions. In the
general case, and after a simple change of the time variable in order to write (1)
in backward form, the HJB equation (1) appears in the study of optimal control of
diffusion processes with controlled reflection on the boundary ∂O. The existence of
such diffusions is related with the so-called Skorokhod problem (see e.g. [22, 45]
for its formulation and [21, 38] for its application to show the existence of reflected
diffusion processes) and provides a rigorous framework to study stochastic optimal
control problems of a class of constrained diffusion processes. We refer the reader to
[18, 37] for the first order (or deterministic) case, i.e. σ ≡ 0, and to [12, 36] for the
general second order (or stochastic) case. Let us also mention the contributions [33,
39, 46] which relate singular optimal control problems (see e.g. [26, Chapter VIII]
and the references therein), having a smooth value function, and reflected diffusions.

Since the HJB equation (1) is possibly degenerate parabolic, one cannot expect
the existence of classical solutions and we have to rely on the notion of viscosity
solution (see e.g. [17]). Moreover, as it has been noticed in [35, 37], in general the
boundary condition in (1) does not hold in the pointwise sense and we have to consider
a suitable weak formulation of it. We refer the reader to [6, 37] and [4, 5, 13, 17, 30],
respectively, for well-posedness results for HJB equations with oblique derivatives
boundary condition in the first and second order cases.

The study of the numerical approximation of solutions to HJB and, more generally,
fully nonlinear secondorder PartialDifferential Equations (PDEs), hasmade important
progress over the last few decades. Most of the related literature consider the case
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whereO = R
N , or where a Dirichlet boundary condition is imposed on the boundary

∂O (see e.g. [23–25, 43] and the references therein). Similarly to the case of oblique
derivatives boundary conditions, when O is bounded and Dirichlet type boundary
conditions are imposed on ∂O, a suitable weak formulation of the latter is needed to
guarantee the well-posedness of the associated HJB equation (see e.g. [7, 8, 32]). In
this context, we refer the reader to [1, 32] for a discussion on numerical scheme that
capture the behaviour of the viscosity solution at the boundary.

Compared with the cases in the previous paragraph, the numerical approximation
of solutions to (1) has been much less explored. In the articles [1, 44] the authors
consider (1) in the particular first order case (σ ≡ 0). Moreover, in the framework of
[44], where a finite difference scheme is proposed, the function defining the boundary
condition has the particular form L(t, x, p, b) = 〈n(x), p〉. On the other hand, both
references consider Hamiltonians which are not necessarily convex with respect to p.
In the recent article [31], the authors consider a fully nonlinear parabolic equation,
with O being a polytopic domain and mixed boundary conditions, and propose a
convergent finite element method. Let us also mention the reference [2], where, in the
context of mean curvature motion with nonlinear Neumann boundary conditions, the
authors propose a discretization that combines a Semi-Lagrangian (SL) scheme in the
main part of the domain with a finite difference scheme near the boundary.

The main purpose of this article is to provide a consistent, stable, monotone and
convergent SL scheme to approximate the unique viscosity solution to (1). By the
results in [4], the latter is well-posed in C([0, T ] × O) under the assumptions in
Sect. 2 below. Semi-Lagrangian schemes to approximate the solution to (1) when
O = R

N (see e.g. [14, 19]) can be derived from the optimal control interpretation of (1)
and a suitable discretization of the underlying controlled trajectories. These schemes
enjoy the feature that they are explicit and stable under an inverse Courant-Friedrichs-
Lewy (CFL) condition and, consequently, they allow large time steps. This is an
advantage compared to classic finite difference schemes, which require to be implicit
in order to allow large time steps. A second important feature is that they permit
a simple treatment of the possibly degenerate second order term in H . The scheme
that we propose for O �= R

N preserves these two properties and seems to be the first
convergent scheme to approximate (1) with the rather general assumptions in Sect. 2.
In particular, our results cover the stochastic and degenerate case. Consequently, from
the stochastic control point of view, our scheme allows to approximate the so-called
value function of the optimal control of a controlled diffusion process with possibly
oblique reflection on the boundary ∂O (see [12]). The main difficulty in devising such
a scheme is to be able to obtain a consistency type property at points in the space
grid which are near the boundary ∂O while maintaining the stability. This is achieved
by considering a discretization of the underlying controlled diffusion which suitably
emulates its reflection at the boundary in the continuous case. We refer the reader to
[41] for a related construction of a semi-discrete in time approximation of a second
order non-degenerate linear parabolic equation.

The remainder of this paper is structured as follows. In Sect. 2 we state our assump-
tions, we recall the notion of viscosity solution to (1), and we show the existence of
oblique projections onto ∂O for points near the boundary. In Sect. 3 we provide the SL
scheme as well as its probabilistic interpretation (in the spirit of [41]). The latter will
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play an important role in Sect. 4, which is devoted to show a consistency type property
and the stability of the SL scheme. By using the half-relaxed limits technique intro-
duced in [8], we show in Sect. 5 our main result, which is the convergence of solutions
to the SL scheme towards the unique viscosity solution to (1). The convergence is uni-
form in [0, T ] ×O and holds under the same asymptotic condition between the space
and time steps than in the caseO = R

N . Next, in Sect. 6 we first illustrate the numer-
ical convergence of the SL scheme in the case of a one-dimensional linear equation
with homogeneous Neumann boundary conditions. In this case the numerical results
confirm that the boundary condition in (1) is not satisfied at every x ∈ ∂O, but it is sat-
isfied in the viscosity sense recalled in Sect. 2 below. In a second example, we consider
a two dimensional degenerate second order nonlinear equation on a circular domain
with non-homogeneous Neumann and oblique derivatives boundary conditions. In the
last example, we consider a two-dimensional non-degenerate nonlinear equation on a
non-smooth domain. Due to the lack of regularity of ∂O, our convergence result does
not apply. However, the SL scheme can be successfully applied, which suggests that
our theoretical findings could hold for more general domains. This extension as well
as the corresponding study in the stationary framework remain as interesting subjects
of future research.

2 Preliminaries

As mentioned in the introduction, it will be simpler to describe our approximation
scheme when (1) is written in backward form. This can be done by a simple change
of the time variable and a possible modification of the time dependency of H . Let us
set OT := [0, T ) × O and OT = [0, T ] × O. We consider the HJB equation

−∂t u + H
(
t, x, Du, D2u

) = 0 in OT ,

L(t, x, Du) = 0 on [0, T ) × ∂O,

u(T , x) = Ψ (x) in O,

(HJB)

where H and L are respectively given by (2) and (3).
For notational convenience, throughout this article, we will write γb(x) = γ (x, b)

for all x ∈ ∂O and b ∈ B. Our standing assumptions for the data in (HJB) are the
following.

(H1) O ⊆ R
N is a nonempty, bounded domain with boundary ∂O of class C3.

(H2)The functionsσ ,μ, f , g andΨ are continuous.Moreover, for everya ∈ A, the
functionsσ(·, ·, a) andμ(·, ·, a) areLipschitz continuous,withLipschitz constants
independent of a ∈ A.
(H3) The function γ is of class C1. We also assume that

(∀ (x, b) ∈ ∂O × B) |γb(x)| = 1 and 〈n(x), γb(x)〉 > 0,

where, for every x ∈ ∂O, we recall that n(x) denotes the unit outward normal
vector to O at x .
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2.1 Viscosity solutions

Wenow recall the notion of viscosity solution to (HJB) (see [4]).We need first to intro-
duce some notation. Given a bounded function z : OT → R, its upper semicontinuous
(resp. lower semicontinuous) envelope is defined by

(∀ (t, x) ∈ OT ) z∗(t, x) := lim sup
(s,y)∈OT ,
(s,y)→(t,x)

z(s, y)

⎛

⎜
⎜
⎝resp. z∗(t, x) := lim inf

(s,y)∈OT ,
(s,y)→(t,x)

z(s, y)

⎞

⎟
⎟
⎠ .

(4)

Definition 1 (i) An upper semicontinuous function u1 : OT → R is a viscosity
subsolution to (HJB) if for any (t, x) ∈ OT and φ ∈ C2(OT ) such that u1 −φ has
a local maximum at (t, x), we have

− ∂tφ(t, x) + H(t, x, Dφ(t, x), D2φ(t, x)) ≤ 0, (5)

if (t, x) ∈ OT ,

min
{
−∂tφ(t, x)+H(t, x, Dφ(t, x), D2φ(t, x)), L(t, x, Dφ(t, x))

}
≤0, (6)

if (t, x) ∈ [0, T ) × ∂O and,

u1(t, x)≤Ψ (x), (7)

if (t, x) ∈ {T } × O.
(ii) A lower semicontinuous function u2 : OT → R is a viscosity supersolution to

(HJB) if for any (t, x) ∈ OT and φ ∈ C2(OT ) such that u2 − φ has a local
minimum at (t, x), we have

− ∂tφ(t, x) + H(t, x, Dφ(t, x), D2φ(t, x)) ≥ 0, (8)

if (t, x) ∈ OT ,

max
{
−∂tφ(t, x)+H(t, x, Dφ(t, x), D2φ(t, x)), L(t, x, Dφ(t, x))

}
≥0, (9)

if (t, x) ∈ [0, T ) × ∂O and,

u2(t, x) ≥ Ψ (x), (10)

if (t, x) ∈ {T } × O.
(iii) A bounded function u : OT → R is a viscosity solution to (HJB) if u∗ and u∗,

defined in (4), are, respectively, sub- and supersolutions to (HJB).
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Remark 1 As shown in [13, Proposition 6], relation (7) can be replaced by

min
{
−∂tφ(t, x) + H(t, x, Dφ(t, x), D2φ(t, x)), u1(t, x) − Ψ (x)

}
≤ 0, (11)

if (t, x) ∈ {T } × O, and

min
{
−∂tφ(t, x) + H(t, x, Dφ(t, x), D2φ(t, x)), L(t, x, Dφ(t, x)), u1(t, x) − Ψ (x)

}
≤ 0,

(12)

if (t, x) ∈ {T } × ∂O. Similarly, condition (10) can be replaced by

max
{
−∂tφ(t, x) + H(t, x, Dφ(t, x), D2φ(t, x)), u2(t, x) − Ψ (x)

}
≥ 0,

(13)

if (t, x) ∈ {T } × O, and

max
{
−∂tφ(t, x) + H(t, x, Dφ(t, x), D2φ(t, x)), L(t, x, Dφ(t, x)), u2(t, x) − Ψ (x)

}
≥ 0,

(14)

if (t, x) ∈ {T } × ∂O.

The following well-posedness result for (HJB) has been shown in [4, Theorem II.1]
(see also [12]).

Theorem 1 Assume (H1)–(H3). Then there exists a unique viscosity solution u ∈
C(O) to (HJB).

Remark 2 (i) [Comparison principle and uniqueness] The existence of at most one
solution to (HJB) follows from the following comparison principle (see [4, Theo-
rem II.1] and also [12, Proposition 3.4]). If u1 : OT → R is a bounded viscosity
subsolution to (HJB) and u2 : OT → R is a bounded viscosity supersolution to
(HJB), then

u1 ≤ u2 in OT .

(ii) [Existence] Once a comparison principle has been shown, the existence of a solu-
tion to (HJB) followsusually from the existenceof sub- and supersolutions to (HJB)
and Perron’s method. In Sect. 5, we construct sub- and supersolutions to (HJB) as
suitable limits of solutions to the approximation scheme that we present in the
next section. Together with the comparison principle, this yields an alternative
existence proof of solutions to (HJB).
A different and interesting technique to show the existence of a solution to (HJB) is
to consider a suitable stochastic optimal control problem,with controlled reflection
of the state trajectory at the boundary ∂O, and to show that the associated value
function is a viscosity solution to (HJB). This strategy has been followed in [12].
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(iii) [Continuity] The continuity of the unique viscosity solution to (HJB) follows
directly from the comparison principle and the continuity properties required
in the definition of sub- and supersolutions to (HJB). Notice that, as usual for
parabolic problems with Neumann type boundary conditions, we do not require
any compatibility condition between Ψ and the operator L at the boundary ∂O.

2.2 Existence of projections near the boundary

In this section we first study the existence of the projection of x onto ∂O parallel to
γb in a neighbourhood of ∂O and for b ∈ B. These projections play an important role
in the construction of our scheme in Sect. 3. The following result is an extension of
a result in [28, Section 1.2] to the regularity that we assume in this paper and, more
importantly, to the dependence of γ on b. Recall that in (H3) ∂O is assumed to be of
class C3. However, the result in Proposition 1 below is also valid if ∂O is only of class
C2.

Proposition 1 Under (H3), there exists R > 0 such that, for any x ∈ R
N satisfying

d(x, ∂O) < R and for any b ∈ B, there exist a unique pγb (x) ∈ ∂O and a unique
dγb (x) ∈ R such that

x = pγb (x) + dγb (x)γb(p
γb (x)). (15)

The mappings (x, b) �→ pγb (x) and (x, b) �→ dγb (x), called respectively the projec-
tion onto ∂O parallel to γb and the algebraic distance to ∂O parallel to γb, are of
class C1.

Proof We use the same outline and, as much as possible, the same notations than those
in [28].

Let us fix (s, b0) ∈ ∂O× B. Let gs : Us → ∂O be a C2 parametrization of ∂O in a
neighbourhood of s, withUs being an open subset ofRN−1, z0 ∈ Us , and gs(z0) = s.
By (H3) the function

Us × R × V � (z, λ, b) �→ Gs(z, λ, b) = (gs(z) + λγb(g
s(z)), b) ∈ R

N × R
NB

is of class C1. The Jacobian matrix of Gs has the form

J s(z, λ, b) =
(
Jz,λ(z, λ, b) Jb(z, λ, b)

0NB ,N INB

)
,

where Jz,λ(z, λ, b) coincides with J (z, λ) of the Appendix A of [28], that is

Jz,λ(z, λ, b) =
⎛

⎝∂z1g
s(z) + λ∂z1γb(g

s(z)) · · · ∂zN−1g
s(z) + λ∂zN−1γb(g

s(z)) γb(g
s(z))

⎞

⎠ .
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In particular, for λ = 0,

Jz,λ(z, 0, b) =
⎛

⎝∂z1g
s(z) · · · ∂zN−1g

s(z) γb(gs(z))

⎞

⎠

is invertible since its N − 1 first columns span the tangent space to ∂O at gs(z) and,
since

〈n(gs(z)), γb(g
s(z))〉 > 0,

its last column is non tangent to ∂O. It follows that J s(z, 0, b) is also invertible, and
we can therefore apply the inverse mapping theorem to Gs at (z0, 0, b0) to obtain the
existence of a neighbourhood V s,b0 of (s, b0) and C1 mappings V s,b0 � (x, b) �→
pγb (x) ∈ ∂O and V s,b0 � (x, b) �→ dγb (x) such that (15) holds for every (x, b) ∈
V s,b0 . The compactness of ∂O × B ⊂ ∪(s,b0)∈∂O×BV s,b0 enables to consider a finite
number of (si , (b0)i ), 1 ≤ i ≤ k, such that ∂O× B ⊂ ∪k

i=1V
si ,(b0)i . Then there exists

R̄ > 0 such that {y ∈ R
N | d(y, ∂O) < R̄} × B ⊂ ∪k

i=1V
si ,(b0)i . In particular for

any x such that d(x, ∂O) < R̄ and any b ∈ B, there exist at least a point pγb (x)
and a scalar dγb (x) such that (15) holds. We claim that there exists R ∈ (0, R̄) such
that for any x satisfying d(x, ∂O) < R and any b ∈ B, pγb (x) is unique (and as a
consequence dγb (x) is also unique). Assume that this is not the case. Then (considering
for example R = 1

k ) one can build a sequence (xk, bk)k∈N converging (after extracting

a subsequence) to some point (ŝ, b̂) ∈ ∂O× B and such that for all k ∈ N, xk has two
distinct projections p

γbk
i (xk)with associated algebraic distances d

γbk
i (xk), i = 1, 2. At

the limit point ŝ, we consider Gŝ which is a local diffeomorphism on a neighbourhood
of (ẑ, 0, b̂) (with gŝ(ẑ) = ŝ). Since xk → ŝ ∈ ∂O, then p

γbk
i (xk) → ŝ and d

γbk
i (xk) →

0, i = 1, 2. Let zi,k be such that gŝ(zi,k) = p
γbk
i (xk) and λi,k = d

γbk
i (xk), i = 1, 2.

Then (zi,k, λi,k, bk)k , i = 1, 2, are distinct sequences that both converge to (ẑ, 0, b̂)
and have the same image Gŝ(zi,k, λi,k, bk) = (xk, bk). This contradicts that Gŝ is a
local diffeomorphism on a neighbourhood of (ẑ, 0, b̂). ��

For any ε ≥ 0 let us define

Dε = {x ∈ O | d(x, ∂O) > ε}, (16)

∂Dε = {x ∈ O | d(x, ∂O) = ε}, (17)

Lε = {x ∈ O | d(x, ∂O) ≤ ε}. (18)

Now we focus on the existence of classical projections of x ∈ Lε onto ∂Dε and the
regularity of Lε � x �→ d(x, Dε) ∈ R. The following result will be useful in order to
study the stability of the scheme in Sect. 4.

Lemma 1 Assume (H3). Then the following hold:

(i) There exists η > 0 such that on Lη, the projection p∂O onto ∂O is well-defined
and C1.
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(ii) The distance function Lη � x �→ d(x, ∂O) ∈ R is C3, and Dd(·, ∂O)(x) =
−n(p∂O(x)).

Let δ ∈ [0, η]. Then the following hold:

(iii) ∂Dδ is of class C3 and, denoting by nδ(x) the unit outward normal at x ∈ ∂Dδ ,
we have nδ(x) = n(p∂O(x)).

(iv) For every x ∈ Lδ , p = p∂O(x) − δn(p∂O(x)) is a projection of x onto ∂Dδ .
(v) The function x �→ d(x, ∂Dδ) is of class C3 on Lδ and d(x, ∂O)+ d(x, ∂Dδ) = δ

for every x ∈ Lδ .

Proof (i) and (ii) See [27, Lemma 14.16].
(iii) This follows from (ii) and (17).
(iv) & (v) Let us first show that p ∈ ∂Dδ . We have d(p, ∂O) ≤ |p − p∂O(x)| = δ.
Thus, p ∈ Lδ and, by (i), p∂O(x) = p∂O(p), which implies that d(p, ∂O) = δ and
hence p ∈ ∂Dδ . Since

x = p∂O(x) − d(x, ∂O)n(p∂O(x)),

we obtain d(x, ∂Dδ) ≤ |p − x | = δ − d(x, ∂O). Assume that d(x, ∂Dδ) < δ −
d(x, ∂O). Then there exists p′ ∈ ∂Dδ such that |x − p′| < δ−d(x, ∂O). This implies
that

δ = d(p′, ∂O) ≤ |p′ − p∂O(x)| ≤ |p′ − x | + |x − p∂O(x)| < δ,

which is impossible. Thus

|p − x | = d(x, ∂Dδ) = δ − d(x, ∂O).

The first equality above implies that p is a projection of x onto ∂Dδ . Since x ∈ Lδ is
arbitrary, the second equality above and (ii) imply that (v) holds. ��

3 The fully discrete scheme

We introduce in this section a fully discrete SL scheme that approximates the unique
viscosity solution to (HJB). Throughout this section, we assume that (H1)–(H3) are
fulfilled.

3.1 Discretization of the space domainO

Let us fix Δx > 0 and consider a polyhedral domain OΔx ⊆ R
N such that

d(O,OΔx ) = inf {|x − y| | x ∈ O, y ∈ OΔx } ≤ C(Δx)2, (19)

for some C > 0. A construction of such a domain OΔx can be found in [9, Section
3] for N = 2 or N = 3, which explains the dimension constraint N ≤ 3. However,
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Fig. 1 An example of a domain
O with a hole (boundary drawn
with thick red line), an
approximating polyhedral
domainOΔx (boundary drawn
with black line), together with
the triangulations TΔx (elements
with blue and black sides) and
T̂Δx (curved elements with blue
and red sides)

the results in the remainder of this article can be extended to N > 3, provided that
a numerical domain OΔx satisfying (19) exists. Let TΔx be a triangulation of OΔx

consisting of simplicial finite elements Twith vertices in GΔ = {xi | i = 1, . . . , NΔx }
(for some NΔx ∈ N). We assume that Δx is the mesh size, i.e. the maximum of the
diameters of T ∈ TΔx , all the vertices on ∂OΔx belong to ∂O, at most one face of
each element T ∈ TΔx , with at least one vertex in ∂OΔx , intersects ∂OΔx , and TΔx

satisfies the following regularity condition: there exists δ ∈ (0, 1), independent ofΔx ,
such that each T ∈ TΔx is contained in a ball of radius Δx/δ and contains a ball of
radius δΔx . As in [20], we introduce an auxiliary exact triangulation T̂Δx of O with
vertices in GΔx . The boundary elements of T̂Δx are allowed to be curved, we have

O =
⋃

T̂∈T̂Δx

T̂

and T̂Δx differs from TΔx only in the elements with vertices in ∂O.
Denoting by pT the projection on T ∈ TΔx , the projection pΔx : O → OΔx ∩O is

defined by

pΔx (x) = pT(x), if x ∈ T̂ ∈ T̂Δx

and the element T ∈ TΔx has the same vertices than T̂.

In Fig. 1 we show an example of a domain O ⊂ R
2 together with a polyhedral

domain OΔx , that approximates O. We observe that in this case, the domain OΔx is
not contained inO. In Fig. 2, we show two pairs of elements T and T̂, which share the
same vertices, in two different cases. The pair on the left corresponds to a couple of
elements with two vertices on the convex part of the boundary. In this case, the local
operator pT projects the points of the curved element T̂ onto the affine element T. In
the other case, the pair of elements on the right has two vertices on a concave part of
the domain and therefore, since T̂ ⊂ T, pT(x) = x for any x ∈ T̂.
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Fig. 2 Examples of two pairs of elements T (with blue and black sides) and T̂ (with blue and thick red
sides) that share the same vertices. In both cases, pΔx is defined on the curved element T̂. On the right,
pΔx (x) = x for all x ∈ T̂ while, on the left, pΔx (x) = pT(x) �= x for all x ∈ T̂\T

Set IΔx = {1, . . . , NΔx } and denote by {ψi | i ∈ IΔx } the linear finite element
P1 basis function on TΔx . More precisely, for each i ∈ IΔx , ψi : OΔx → R is a
continuous function, affine on each T ∈ TΔx , 0 ≤ ψi ≤ 1, ψi (xi ) = 1, ψi (x j ) = 0

for all i , j ∈ IΔx with i �= j , and
∑NΔx

i=1 ψi (x) = 1 for all x ∈ OΔx . For any
φ : GΔx → R its linear interpolation I [φ] on the mesh T̂Δx is defined by

I [φ] (x) :=
NΔx∑

i=1

ψi (pΔx (x))φ(xi ), for all x ∈ O. (20)

Lemma 2 Let φ ∈ C2(O) and denote by φ|GΔx its restriction to GΔx . Then there exists
a constant Cφ > 0, independent of Δx, such that

sup
x∈O

∣
∣φ(x) − I

[
φ|GΔx

]
(x)

∣
∣ ≤ Cφ(Δx)2. (21)

Proof Let x ∈ O and let T ∈ TΔx and T̂ ∈ T̂Δx be two elements having the same
vertices and such that x ∈ T̂. By the triangular inequality

|φ(x) − I
[
φ|GΔx

]
(x)| ≤ |φ(x) − φ(pT(x))| + |φ(pT(x)) − I

[
φ|GΔx

]
(x)|.

(22)

Using that φ is Lipschitz, we deduce from (19) the existence ofC1 > 0, independent of
Δx and x ∈ O, such that |φ(x)−φ(pT(x))| ≤ C1(Δx)2. In addition, by standard error
estimates for P1 interpolation (see for instance [16]) and (20), there exists C2 > 0,
independent of Δx and x ∈ O, such that |φ(pT(x)) − I

[
φ|GΔx

]
(x)| ≤ C2(Δx)2.

Relation (21) follows from these two estimates and (22). ��

3.2 A semi-Lagrangian scheme

Let Δt > 0, set NΔt := �T /Δt�, IΔt := {0, . . . , NΔt } and I∗
Δt := IΔt\{NT }. We

define the time grid GΔt := {tk | tk = kΔt, k ∈ IΔt }.
Given (k, i) ∈ I∗

Δt × IΔx , a ∈ A, and 
 = 1, . . . , Nσ , we define the discrete
characteristics

y±,

k,i (a) = xi + Δtμ (tk, xi , a) ±√

Nσ Δtσ
(tk, xi , a). (23)
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Fig. 3 Reflection: reflected characteristic ỹsk,i (a) (red square) starting from xi (black circle), which exits

from O and arrives in ysk,i (a) (black square). The red segment represents the oblique direction γb and the

black circle the projected point pγb (ysk,i (a))

For any δ > 0 we set

(∂O)δ := {x ∈ R
N | d(x, ∂O) < δ}.

By Proposition 1, there exist R > 0 and two C1 functions (∂O)R × B � (x, b) �→
pγb (x) ∈ ∂O and (∂O)R × B � (x, b) �→ dγb (x) ∈ R, uniquely determined, such
that

x = pγb (x) + dγb (x)γb(p
γb (x)), for all (x, b) ∈ (∂O)R × B. (24)

Set I = {+,−} × {1, . . . , Nσ } and let c̄ > 0 be a fixed constant. From (24), there
exists Δt > 0 such that for all Δt ∈ [0,Δt], (k, i) ∈ I∗

Δt × IΔx , a ∈ A, b ∈ B, and
s ∈ I, the reflected characteristic

ỹsk,i (a, b) :=
{
ysk,i (a) if ysk,i (a) ∈ O,

pγb (ysk,i (a)) − c̄
√

Δtγb(pγb (ysk,i (a))) otherwise
(25)

is well-defined.

Remark 3 The introduction of parameter c is inspired from [42] and its role is to obtain
a reflection of the characteristic ysk,i (a) insideO, whose distance to ∂O, in the direction

γb(pγb (ysk,i (a))), is of order
√

Δt . This property will play a key role in the proofs of
our main results (see Remark 5).

In Fig. 3 we illustrate how the reflected characteristic is computed from the
projection pγb (ysk,i (a)) of ysk,i (a) onto ∂O parallel to γb.

Let us set

d̃sk,i (a, b) :=
{
0 if ysi,k(a) ∈ O,

dγb (ysk,i (a)) + c̄
√

Δt otherwise,
(26)

g̃sk,i (a, b) :=
{
0 if ysk,i (a) ∈ O,

g
(
tk, pγb

(
ysk,i (a)

)
, b

)
otherwise.

(27)
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Notice that if ysk,i (a) /∈ O, then (24), (25), and (26) imply that

ỹsk,i (a, b) = ysk,i (a) − d̃sk,i (a, b)γb
(
pγb (ysk,i (a))

)
. (28)

For (k, i) ∈ I∗
Δt × IΔx and Φ : GΔx → R, let us define Sk,i [Φ] : A × B → R by

Sk,i [Φ](a, b) := 1

2Nσ

∑

s∈I

[
I [Φ](ỹsk,i (a, b))+d̃sk,i (a, b)g̃sk,i (a, b)

]
+ Δt f (tk, xi , a)

(29)

and set

Sk,i [Φ] := inf
a∈A, b∈B Sk,i [Φ](a, b). (30)

Given U ∈ B(GΔt × GΔx ), let us denote Uk = {Uk,i }i∈GΔx . In the remainder of this
work, we will consider the following fully discrete SL scheme to approximate the
solution to (HJB):

Uk,i = Sk,i
[
Uk+1

]
, for (k, i) ∈ I∗

Δt × IΔx ,

UNΔt ,i = Ψ (xi ), for i ∈ IΔx ,
(HJBdisc)

The main difference with respect to the SL scheme when O = R
d (see e.g. [14])

is the presence of the terms ỹsk,i (a, b), rather than ysk,i (a), and d̃sk,i (a, b)g̃sk,i (a, b) in
the definition of Sk,i [Φ](a, b). These additional terms will make appear the boundary
condition in the expansion of Sk,i [φ|GΔx ] − φ(xi ), where φ : O → R is smooth, at
grid points xi where ysk,i (a) /∈ O for some a ∈ A and s ∈ I (see Proposition 3 below).

3.3 Probabilistic interpretation of the scheme

The fully-discrete SL scheme to approximate the solution to (HJB) in the unbounded
case, i.e. O = R

d , has a natural interpretation in terms of a discrete time, finite
state, Markov control process (see e.g. [14, Section 3]). We show below that a similar
interpretation holds for (HJBdisc). The latter will play an important role in the stability
analysis of (HJBdisc) presented in the next section. Given k ∈ I∗

Δt , a ∈ A, and b ∈ B,
let us define the controlled transition law

pk,i, j (a, b) := 1

2Nσ

∑

s∈I
ψ j (ỹ

s
k,i (a, b)), for all i, j ∈ IΔx . (31)

We say that (πk)k∈I∗
Δt

is a NΔt -policy if for all k ∈ I∗
Δt we have πk : GΔx → A × B.

The set of NΔt -policies is denoted by ΠNΔt . Let us fix k ∈ I∗
Δt and, for notational

convenience, set Xk = GNΔt−k+1
Δx . Associated to xi ∈ GΔx and π ∈ ΠNΔt , there
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exists a probability measure Pk,xi ,π on 2Xk (the powerset of Xk) and a Markov chain
{Xm |m = k, . . . , NΔt }, with state space GΔx , such that

P
k,xi ,π (Xk = xi ) = 1 and P

k,xi ,π (Xm+1 = x j | Xm = xi ) = pm,i, j (πm(xi )),
(32)

for m = k, . . . , NΔt − 1. Now, consider a family {ξk+1, . . . , ξNΔt } of RNσ -valued
independent random variables, which are also independent of {Xm |m = k, . . . , NΔt },
and with common distribution given by

P(ξm = ±e
) = 1

2Nσ

, for m = k + 1, . . . , NΔt and 
 = 1, . . . , Nσ ,

where e
 denotes the 
-th canonical vector of RNσ . By a slight abuse of notation (see
(23)), for m = k, . . . , NΔt − 1, xi ∈ GΔx , and a ∈ A, let us set

ym(xi , a) = xi + Δtμ(tm, xi , a) + √
Nσ Δtσ(tm, xi , a)ξm+1. (33)

For m = k, . . . , NΔt − 1, xi ∈ GΔx , a ∈ A, and b ∈ B, define the random variable

h(tm , xi , a, b) =
{
0 if ym(xi , a) ∈ O,(
dγb (ym(xi , a)) + c̄

√
Δt

)
g(tm , pγb (ym(xi , a)), b) otherwise.

(34)

For all i ∈ INΔx and π ∈ ΠNΔt , let us define

Jk,i (π) = E
P
k,xi ,π

(∑NΔt−1
m=k

[
Δt f (tm , Xm , αm) + h(tm , Xm , αm , βm

)] + Ψ
(
XNΔt

))
,

JNΔt ,i (π) = Ψ (xi ),

where, for notational convenience, we have denoted, respectively, by αm and βm the
first NA and the last NB coordinates of πm(Xm). Notice that, by construction and (29),
we have that

Jk,i (π) = Sk,i [Jk+1(π)](αk, βk).

Moreover, setting

Ûk,i = infπ∈ΠNΔt
Jk,i (π),

ÛNΔt ,i = Ψ (xi ),

for all i ∈ GΔx , the dynamic programming principle (see e.g. [29, Theorem 12.1.5])
implies that {Ûk,i | k ∈ IΔt , i ∈ IΔx } satisfies (HJBdisc). Since the latter has a unique
solution, we deduce that Uk,i = Ûk,i for all k ∈ IΔt and i ∈ IΔx .
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Remark 4 When O = R
d , the semi-Lagrangian scheme studied in [14] can be

described in terms of a Markov chain with controlled transition probabilities

pk,i, j (a) = 1

2Nσ

∑

s∈I
ψ j (y

s
k,i (a)), for all i, j ∈ Z

d (35)

(since there is no boundary, there is no control b ∈ B) and allows to approximate
the value function of a stochastic optimal control problem with state space Rd . In the
case of a bounded domain and oblique reflection on the boundary, the characteristic
ysk,i (a) is replaced by the reflected one ỹsk,i (a, b) (see Fig. 3), which yields (32). In this
manner, scheme (HJBdisc) can thus be interpreted as a Markov chain discretization of
a stochastic control problem with state spaceO and oblique reflection at the boundary
(see e.g. [12]).

We refer the reader to [34, Chapter 5, Section 7] for a related Markov chain dis-
cretization of a stochastic control problem with reflection leading to a finite difference
scheme.

4 Properties of the fully discrete scheme

In this section, we establish some basic properties of (HJBdisc).

Proposition 2 The following hold:

(i) (Monotonicity) For all U , V : GΔx → R with U ≤ V , we have

Sk,i [U ] ≤ Sk,i [V ], for k ∈ I∗
Δt and i ∈ IΔx .

(ii) (Commutation by constant) For any c ∈ R and U : GΔx → R,

Sk,i [U + c] = Sk,i [U ] + c, for k ∈ I∗
Δt and i ∈ IΔx .

Proof Both assertions follow directly from (29) and (HJBdisc). ��
We show in Proposition 3 below a consistency result for (HJBdisc). For this purpose,
let us set

H(t, x, p, M, a) = −1

2
Tr

(
σ(t, x, a)σ (t, x, a)�M

)
− 〈μ(t, x, a), p〉 − f (t, x, a),

for (t, x, p, M, a) ∈ OT × R
N × R

N×Nσ × A, (36)

Ł(t, x, p, b) = 〈γ (x, b), p〉 − g(t, x, b),

for (t, x, p, b) ∈ [0, T ] × ∂O × R
N × B, (37)

and for all k ∈ I∗
Δt , i ∈ IΔx , s ∈ I, q ∈ R

N , a ∈ A, and b ∈ B, define

Ł̃
s
k,i (q, a, b) :=

{
0 if ysk,i (a) ∈ O,

Ł
(
tk, pγb (ysk,i (a)), q, b

)
otherwise.

(38)
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The following consistency result relates the operator Sk,i with the Hamiltonian and
the boundary condition in (HJB).

Proposition 3 (Consistency) Let φ ∈ C3
(
O

)
and denote by φ|GΔx its restriction to

GΔx . Then the following hold:

(i) For all k ∈ I∗
Δt , i ∈ IΔx , a ∈ A, and b ∈ B, we have

Sk,i [φ|GΔx ](a, b) − φ(xi )

= −ΔtH(tk, xi , Dφ(xi ), D
2φ(xi ), a)

− 1

2Nσ

∑

s∈I
d̃sk,i (a, b)

(
Ł̃s
k,i (Dφ(xi ), a, b) − √

Δt K s
k,i (a, b)

)

+ O
(
Δt

√
Δt + (Δx)2

)
, (39)

where the set of constants {Ks
k,i (a, b) | k ∈ I∗

Δt , i ∈ IΔx , s ∈ I, a ∈ A, b ∈ B}
is bounded, independently of (Δt,Δx).

(ii) For all k ∈ I∗
Δt and i ∈ IΔx , we have

Sk,i [φ|GΔx ] − φ(xi )

= − sup
a∈A, b∈B

{
ΔtH(tk, xi , Dφ(xi ), D2φ(xi ), a)

+ 1
2Nσ

∑

s∈I
d̃sk,i (a, b)

(
Ł̃s
k,i (Dφ(xi ), a, b) − √

Δt K s
k,i (a, b)

) }

+ O
(
Δt

√
Δt + (Δx)2

)
.

Proof In what follows, we denote by C > 0 a generic constant, which is independent
of k, i , s a, b, Δt and Δx . Since assertion (ii) follows directly from (i), we only show
the latter.

For every s ∈ I, (23) and (26) imply that 0 ≤ d̃sk,i (a, b) ≤ C
√

Δt . Thus, by (23),
(28), and a second order Taylor expansion of φ around xi , for every 
 = 1, . . . , Nσ ,
we have

φ
(
ỹ±,

k,i (a, b)

)

= φ (xi ) + Δt〈Dφ(xi ), μ(tk, xi,a)〉 + Nσ Δt

2
〈D2φ(xi )σ


(tk, xi,a), σ

(tk, xi,a)〉

±√
Nσ Δt〈Dφ(xi ), σ


(tk, xi , a)〉 − d̃±,

k,i (a, b)

〈
Dφ(xi ), γ̃

±,

k,i (a, b)

〉

+
(
d̃±,

k,i (a, b)

)2

2

〈
D2φ(xi )γ̃

±,

k,i (a, b), γ̃ ±,


k,i (a, b)
〉

∓√
Nσ Δt d̃±,


k,i (a, b)
〈
D2φ(xi )γ̃

±,

k,i (a, b), σ 
(tk, xi,a)

〉

+O
(
Δt

√
Δt

)
,
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where, for every s ∈ I,

γ̃ s
k,i (a, b) :=

{
0 if ysk,i (a) ∈ O,

γb

(
pγb (ysk,i (a))

)
otherwise.

This implies that

1
2φ

(
ỹ+,

k,i (a, b)

)
+ 1

2φ
(
ỹ−,

k,i (a, b)

)

= φ(xi ) + Δt 〈Dφ(xi ), μ(tk , xi , a)〉 + Nσ Δt
2

〈
D2φ(xi )σ 
(tk , xi , a), σ 
(tk , xi , a)

〉

− d̃+,

k,i (a, b)

(〈
Dφ(xi ), γ̃

+,

k,i (a, b)

〉
− √

Δt K+,

k,i (a, b)

)

− d̃−,

k,i (a, b)

(〈
Dφ(xi ), γ̃

−,

k,i (a, b)

〉
− √

Δt K−,

k,i (a, b)

)
+ O

(
Δt

√
Δt

)
,

(40)

where

K±,

k,i (a, b) := d̃±,


k,i (a, b)

2
√

Δt
〈D2φ(xi )γ̃

±,

k,i (a, b), γ̃ ±,


k,i (a, b)〉

∓√
Nσ 〈D2φ(xi )γ̃

±,

k,i (a, b), σ 
(tk, xi , a)〉.

(41)

Multiplying (40) by 1/Nσ and taking the sum over s ∈ I, we obtain

1
2Nσ

∑

s∈I
φ(ỹsk,i (a, b))

= φ(x) + Δt〈Dφ(xi ), μ(tk, xi , a)〉 + Δt
2 Tr

(
σ(tk, xi , a)σ (tk, xi , a)T D2φ(xi )

)

− 1
2Nσ

∑

s∈I
d̃sk,i (a, b)

(〈
Dφ(xi ), γ̃ s

k,i (a, b)
〉
− √

Δt K s
k,i (a, b)

)

+ O
(
Δt

√
Δt

)
,

which, by Lemma 2, yields

1
2Nσ

∑

s∈I
I [φ|GΔx ](ỹsk,i (a, b))

= φ(x) + Δt〈Dφ(xi ), μ(tk, xi , a)〉 + Δt
2 Tr

(
σ(tk, xi , a)σ (tk, xi , a)T D2φ(xi )

)

− 1
2Nσ

∑

s∈I
d̃sk,i (a, b)

(〈
Dφ(xi ), γ̃ s

k,i (a, b)
〉
− √

Δt K s
k,i (a, b)

)

+O
(
Δt

√
Δt + (Δx)2

)
.

The result follows from the previous expression, (29), (36) and (38). ��
Remark 5 Assertion (i) in the previous consistency result shows that the first and sec-
ond main terms in the expansion of Sk,i [φ|GΔx ](a, b) − φ(xi ) involve the functionH,
multiplied by Δt , and the boundary terms Ł̃s

k,i , multiplied by d̃sk,i (a, b), respectively.

Notice that if ysk,i (a, b) /∈ O, then the presence of c̄ in (26) implies that d̃sk,i (a, b) is

of order
√

Δt . This last property will be crucial in order to establish the stability of
the scheme (see Lemma 3 and Proposition 4) and, in Proposition 5, that the upper and
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lower half-relaxed limits of solutions to the scheme, as the discretization parameters
tend to zero, are viscosity sub- and supersolutions to (1), respectively. In turn, by
the comparison principle in Remark 2(i), this will imply that solutions to the scheme
converge to the unique viscosity solution to (HJB) (see Theorem 2).

For k ∈ I∗
Δt and a ∈ A, let us define

(∀ k ∈ I∗
Δt ,∀ a ∈ A) Γk(a) := {xi ∈ GΔx | ∃ s ∈ I, ysk,i (a) /∈ O}, (42)

and recall from Sect. 3.3 that given xi ∈ GΔx and a policyπ ∈ ΠNΔt , theMarkov chain
{Xm |m = k, . . . , NΔt } is defined by the transition probabilities (32). As in Sect. 3.3,
we denote by αm and βm (m = k, . . . , NΔt − 1), respectively, the first NA and the last
NB coordinates of πm(Xm). Finally, given D ⊂ R

d , we denote by ID the indicator
function of D, i.e. ID(x) = 1, if x ∈ D, and ID(x) = 0, otherwise.

The following technical result will be useful to establish the stability of (HJBdisc).

Lemma 3 The following holds:

sup
k∈I∗

Δt , i∈I∗
Δx ,π∈ΠNΔt

E
P
k,xi ,π

(NT −1∑

m=k

IΓm (αm )

(
Xm

)
)

≤ C√
Δt

, (43)

where C > 0 is independent of (Δt,Δx) as long asΔt is small enough and (Δx)2/Δt
is bounded.

Proof The argument of the proof is inspired from [41, Lemma 1]. Let ε > 0, set

Dε = {x ∈ O | d(x, ∂O) > ε}, ∂Dε = {x ∈ O | d(x, ∂O) = ε},
Lε = {x ∈ O | d(x, ∂O) ≤ ε},

and define O � x �→ wε(x) = d2 (x, Dε) ∈ R. By Lemma 1(v), there exists η > 0
such that wη ∈ C3(O \ ∂Dη) with bounded third order derivatives on the connected
components ofO \ ∂Dη. Let us fix this η and, for notational convenience, let us write
w = wη. Let M > 0 and, for any k ∈ IΔt , define

O � x �→ Wk(x) =
{
M(T − tk) + w(x) if k ∈ I∗

Δt ,

0 if k = NΔt
∈ R. (44)
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By (29), with f ≡ 0 and g ≡ 0, for all a ∈ A and b ∈ B, we have

Sk,i [Wk+1|GΔx ](a, b) − Wk(xi ) = −MΔt + Sk,i [w|GΔx ](a, b) − w(xi ), (45)

= −MΔt + 1

2Nσ

∑

s∈I
I [w](ỹsk,i (a, b)) − w(xi ).

(46)

Moreover, assumption (H2) implies the existence of C > 0 such that

sup

{
|ysk,i (a) − xi |

∣∣∣∣ k ∈ I∗
Δt , i ∈ IΔx , a ∈ A, s ∈ I

}
≤ C

√
Δt . (47)

Now, let us fix k ∈ I∗
Δt , i ∈ IΔx , a ∈ A, and b ∈ B. We have the following cases.

(i) xi /∈ Γk(a)andd(xi , ∂Dη) ≥ C
√

Δt . The first condition implies that ysk,i (a) ∈
O, for any s ∈ I, and, hence, (25) yields ỹsk,i (a, b) = ysk,i (a). The condition

d(xi , ∂Dη) ≥ C
√

Δt , (47), and standard error estimates for P1 interpolation (see
for instance [16]), imply that

I [w](ỹsk,i (a, b)) = w(ỹsk,i (a, b)) + O((Δx)2) = w(ysk,i (a)) + O((Δx)2).

Since, by second order Taylor expansion, 1
2Nσ

∑
s∈I w(ysk,i (a)) − w(xi ) = O(Δt),

(46) yields

Sk,i [Wk+1|GΔx ](a, b) − Wk(xi ) = −MΔt + O
(
Δt + (Δx)2

)
. (48)

(ii) xi /∈ Γk(a)andd(xi , ∂Dη) < C
√

Δt . Condition d(xi , ∂Dη) < C
√

Δt and (47)

imply that w(xi ) = O(Δt) and, for any s ∈ I, d2(ysk,i (a), ∂Dη) = O(Δt). Since the
cardinality of J := { j ∈ IΔx | ψ j (ysk,i (a)) > 0} is independent of Δx and, for all
j ∈ J , |ysk,i (a) − x j | = O(Δx), we deduce that

I [w](ysk,i (a)) = ∑
j∈J ψ j (ysk,i (a))w(x j )

≤ ∑
j∈J ψ j (ysk,i (a))d2(x j , ∂Dη)

= ∑
j∈J ψ j (ysk,i (a))d2(ysk,i (a), ∂Dη) + O((Δx)2)

= O(Δt + (Δx)2).

Thus, since ỹsk,i (a, b) = ysk,i (a), (46) implies that (48) still holds.

(iii) xi ∈ Γk(a). Let 0 < δ < η. Since μ and σ are bounded, there exists Δt > 0,
independent of k, i and a, such that

Γk(a) ⊆ Lδ ⊂ Lη, (49)

if Δt ≤ Δt . By (45) and Proposition 3(i), with f ≡ 0 and g ≡ 0, we have

Sk,i [Wk+1|GΔx ](a, b) − Wk(xi )
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= −MΔt − 1

2Nσ

∑

s∈I
d̃sk,i (a, b)

〈
Dw(xi ), γb

(
pγb

(
ysk,i (a)

))〉

+O
(
Δt + (Δx)2

)
. (50)

By Lemma 1(v), for any x ∈ Lη, we have d
(
x, ∂Dη

) = η − d(x, ∂O). Thus,
Lemma 1(ii) implies that Dd

(
x, ∂Dη

) = n(p∂O(x)), and hence

Dw(xi ) = 2d
(
xi , ∂Dη

)
Dd

(
xi , ∂Dη

) = 2d
(
xi , ∂Dη

)
n(p∂O(x)). (51)

On the other hand, in view of [28, Proposition 1.1(v)], there exists C > 0 such that
|dγb (xi )| ≤ Cd(xi , ∂O). Thus,

|pγb (xi ) − p∂O(xi )| ≤ |pγb (xi ) − xi | + |xi − p∂O(xi )| = |dγb (xi )| + d(xi , ∂O)

≤ (C + 1)d(xi , ∂O).

Since xi ∈ Γk(a), we have d(xi , ∂O) = O(
√

Δt) and hence |pγb (xi ) − p∂O(xi )| =
O(

√
Δt). Proposition 1 implies that γb and pγb are Lipschitz and hence, for any s ∈ I,

γb
(
pγb

(
ysk,i (a)

)) = γb
(
pγb (xi )

) + O
(√

Δt
)

= γb (p∂O(xi )) + O
(√

Δt
)

.

(52)

Since, for all s ∈ I, d̃sk,i (a, b) = O(
√

Δt), from (50)–(52) we obtain

Sk,i [Wk+1|GΔx ](a, b) − Wk(xi )

= −MΔt − 1

Nσ

∑

s∈I
d

(
xi , ∂Dη

)
d̃sk,i (a, b)

〈
n(p∂O(xi )), γb (p∂O(xi ))

〉

+ O
(
Δt + (Δx)2

)
. (53)

Noticing that d
(
xi , ∂Dη

) ≥ η − δ > 0 and that, by (H3), ν :=
minx∈∂O,b∈B〈γb(x), n(x)〉 is strictly positive, we get

Sk,i [Wk+1|GΔx ](a, b) − Wk(xi ) ≤ −MΔt − ν(η − δ)

Nσ

∑

s∈I
d̃sk,i (a, b)

+O
(
Δt + (Δx)2

)
.

Since d̃sk,i (a, b) > 0 implies that d̃sk,i (a, b) ≥ c
√

Δt (see (26)), there exists C > 0,
independent of k ∈ I∗

Δt , i ∈ IΔx , a ∈ A, and b ∈ B, such that

Sk,i [Wk+1|GΔx ](a, b) − Wk(xi ) ≤ −MΔt − C
√

Δt + O
(
Δt + (Δx)2

)
. (54)
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As long as (Δx)2/Δt is bounded, we have that O
(
Δt + (Δx)2

) = O(Δt). Thus,
from cases (i)-(iii) we can choose M large enough such that

Sk,i [Wk+1|GΔx ](a, b) − Wk(xi ) ≤ −C
√

ΔtIΓk (a)(xi ). (55)

Now, set qk(xi , a, b) = Wk(xi ) − Sk,i [Wk+1|GΔx ](a, b). Then the probabilistic
interpretation of the operatorSk,i (see Sect. 3.3) implies that, for any policyπ ∈ ΠNΔt ,

Wk(xi ) = E
P
k,xi ,π

(NT −1∑

m=k

qm
(
Xm, αm, βm

) + w
(
XNT

)
)

.

Since (55) implies that qk(xi , a, b) ≥ C
√

ΔtIΓk (a)(xi ) for k ∈ I∗
Δt , i ∈ IΔx , a ∈ A

and b ∈ B, we deduce that for any policy π ∈ ΠNΔt we have

E
P
k,xi ,π

(∑NT −1
m=k IΓm (αm )

(
Xm

))
≤ 1

C
√

Δt
E
P
k,xi ,π

(NT −1∑

m=k

qm
(
Xm, αm, βm

)
)

= Wk(xi ) − E
P
k,xi ,π

(
w

(
XNT

))

C
√

Δt
.

Finally, using that Wk and w are bounded, (43) follows. ��
Proposition 4 (Stability) The fully discrete scheme (HJBdisc) is stable, i.e. there exists
C > 0 such that

max
k∈I∗

Δt , i∈IΔx

|Uk,i | ≤ C, (56)

where C is independent of (Δt,Δx) as long as Δt is small enough and (Δx)2/Δt is
bounded.

Proof Let us fix k ∈ I∗
Δt and i ∈ IΔx . Then the probabilistic interpretation of the

scheme in Sect. 3.3 and the definition of h in (34) imply the existence of a constant
C > 0 such that

|Uk,i | ≤ sup
π∈ΠNΔt

E
P
k,xi ,π

(NΔt−1∑

m=k

[
Δt

∣∣ f (tm, Xm, αm)
∣∣

+ ∣∣h(tm, Xm, αm, βm
)∣∣] + ∣∣Ψ

(
XNΔt

)∣∣)

≤ ‖Ψ ‖∞ + T ‖ f ‖∞ + C
√

Δt‖g‖∞ sup
π∈ΠNΔt

E
P
k,xi ,π

(NΔt−1∑

m=k

IΓm (αm ) (Xm)

)

.

Thus, (56) follows from Lemma 3. ��
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5 Convergence analysis

In this section we provide the main result of this article which is the convergence of
solutions to (HJBdisc) to the unique viscosity solution of (HJB). The proof is based on
the half-relaxed limits technique introduced in [8] and the properties of solutions to
(HJBdisc) investigated in Sect. 4.

Let Δt > 0, let Δx > 0 and let (Uk)
NΔt
k=0 be the solution to (HJBdisc) associated to

the discretization parametersΔt andΔx . Let us define an extension of (Uk)
NΔt
k=0 toOT

by

(∀ (t, x) ∈ OT ) uΔt,Δx (t, x) := I [U�t/Δt�](x), (57)

where we recall that the interpolation operator I [·] is defined in (20). Now, let
(Δtn,Δxn)n∈N ⊆ (0,+∞)2 be such that limn→∞(Δtn,Δxn) = (0, 0) and the
sequence (Δxn/Δtn)n∈N is bounded. For every (t, x) ∈ OT , let us define

u(t, x) := lim sup
n→∞

OT �(sn ,yn)→(t,x)

uΔtn ,Δxn (sn, yn),

u(t, x) := lim inf
n→∞

OT �(sn ,yn)→(t,x)

uΔtn ,Δxn (sn, yn).
(58)

From Proposition 4 we deduce that u : OT → R and u : OT → R are well-defined
and bounded. Moreover, from [3, Chapter V, Lemma 1.5], we have that u and u are,
respectively, upper and lower semicontinuous functions.

Proposition 5 Assume that (Δxn)2/Δtn → 0, as n → ∞. Then u and u are,
respectively, viscosity sub- and supersolutions to (HJB).

Proof We only show that u is a viscosity subsolution to (HJB), the proof that u is
a viscosity supersolution being similar. Let (t̄, x̄) ∈ OT and φ ∈ C∞(OT ) be such
that u(t̄, x̄) = φ(t̄, x̄) and u − φ has a maximum at (t̄, x̄). Then by [3, Chapter V,
Lemma 1.6] there exists a subsequence of (uΔtn ,Δxn )n∈N, which for simplicity is still
labelled by n ∈ N, and a sequence (sn, yn)n∈N ⊆ OT such that (uΔtn ,Δxn )n∈N is
uniformly bounded, uΔtn ,Δxn − φ has a local maximum at (sn, yn), and, as n → ∞,
(sn, yn) → (t̄, x̄) and uΔtn ,Δxn (sn, yn) → u(t̄, x̄). Moreover, by modifying the test
function φ, we can assume that uΔtn ,Δxn − φ has a global maximum at (sn, yn), i.e.
setting ξn := uΔtn ,Δxn (sn, yn) − φ(sn, yn), we have

(∀ (t, x) ∈ OT ) uΔtn ,Δxn (t, x) ≤ φ(t, x) + ξn, with ξn → 0. (59)

We distinguish now the following cases.

(i) (t̄, x̄) ∈ [0, T ) × O. In this case, for all n large enough, by (19), we have yn ∈
OΔxn . Let k : N → I∗

Δtn
be such that sn ∈ [tk(n), tk(n)+1). As n → ∞, we have

tk(n) → t̄ and, from (57) and (59), with t = tk(n)+1, we have

(∀ x ∈ O) I [Uk(n)+1](x) ≤ φ(tk(n)+1, x) + ξn . (60)
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From Proposition 2, we obtain

(∀ i ∈ IΔx ) Skn ,i [Uk(n)+1] ≤ Skn ,i [Φk(n)+1] + ξn, (61)

where, for all k ∈ IΔt , we have denoted Φk := φ(tk, ·)|GΔxn
. In particular, by

(HJBdisc) we get

(∀ i ∈ IΔx ) Uk(n),i ≤ Skn ,i [Φk(n)+1] + ξn . (62)

The monotonicity of the interpolation operator (20) yields

(∀ x ∈ O
)

uΔtn ,Δxn (sn, x) ≤
∑

i∈IΔxn

ψi
(
pΔxn (x)

)
Skn ,i [Φk(n)+1] + ξn, (63)

and hence, by taking x = yn and using the definition of ξn , we obtain

φ(sn, yn) ≤
∑

i∈IΔxn

ψi (yn)Skn ,i [Φk(n)+1]. (64)

Since (t̄, x̄) ∈ [0, T ) × O and A, B are compacts, if n is large enough, for all
a ∈ A, b ∈ B and for all s ∈ I we have d̃skn ,i (a, b) = 0 for all i ∈ IΔx such that
ψi (yn) > 0. Using Proposition 3(ii) and inequality (64), we get

φ(sn, yn) ≤
∑

i∈IΔxn

ψi (yn)

[
φ(tk(n)+1, xi )

−Δtnsup
a∈A

H
(
tk(n), xi , Dφ(tk(n)+1, xi ), D2φ(tk(n)+1, xi ), a

) ]

+O
(
Δtn

√
Δtn + (Δxn)2

)
.

Then following the same arguments than those in [15, Theorem 3.1] (see also [23,
Theorem 4.22]) we conclude that

− ∂tφ(t̄, x̄) + H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0, (65)

and hence (5) holds.
(ii) (t̄, x̄) ∈ [0, T ) × ∂O. If

L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0 or − ∂tφ(t̄, x̄) + H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0,

holds, then (6) holds. Thus, let us suppose that

L(t̄, x̄, Dφ(t̄, x̄)) > 0 and − ∂tφ(t̄, x̄) + H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) > 0.

(66)
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Letting k : N → {0, . . . , NT − 1} as in (i), we have tk(n) → t̄ , (63) holds true, and
hence,

φ(sn, yn) ≤
∑

i∈IΔxn

ψi
(
pΔxn (yn)

)
Skn ,i [Φk(n)+1]. (67)

On the one hand, from Proposition 3(ii) we get

0 ≤
∑

i∈IΔxn

ψi (pΔxn (yn))

(
Δtn∂tφ(tk(n), xi )

− sup
a∈A,
b∈B

{
ΔtnH(tk(n), xi , Dφ(tk(n)+1, xi ), D2φ(tk(n)+1, xi ), a)

+ 1
2Nσ

∑

s∈I
d̃sk,i (a, b)

(
Ł̃s
k(n),i (Dφ(tk(n)+1, xi ), a, b) − √

ΔtnK
s
k(n),i (a, b)

) })

+ O
(
Δtn

√
Δtn + (Δxn)2

)

and hence, for all a ∈ A and b ∈ B, we have

∑

i∈IΔxn

ψi
(
pΔxn (yn)

){
− Δtn∂tφ(tk(n), xi )

+ΔtnH(tk(n), xi , Dφ(tk(n)+1, xi ), D
2φ(tk(n)+1, xi ), a)

+ 1

2Nσ

∑

s∈I
d̃sk,i (a, b)

(
Ł̃s
k(n),i)(Dφ(tk(n)+1, xi ), a, b) − √

ΔtnK
s
k(n),i (a, b)

) }

+O
(
Δtn

√
Δtn + (Δxn)

2
)

≤ 0. (68)

On the other hand, since A is compact, there exists ā ∈ A such that

H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) = H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄), ā)

and

∑

i∈IΔxn

ψi
(
pΔxn (yn)

) (−∂tφ(tk(n), xi )

+ H(tk(n), xi , Dφ(tk(n)+1, xi ), D
2φ(tk(n)+1, xi ), ā)

)

→ −∂tφ(t̄, x̄)+H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)), as n → ∞. (69)

Let us set d̃∗
n = max

{
d̃skn ,i (ā)

∣∣ s ∈ I, i ∈ IΔxn

}
and take a = ā and an arbitrary

b ∈ B in (68). If there exists a subsequence, still labelled by n, such that d̃∗
n = 0,
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then dividing (68) by Δtn , and letting n → ∞, (69) yields

−∂tφ(t̄, x̄) + H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0,

which contradicts (66). Otherwise, by (26), for all n ∈ N, large enough, we have
d̃∗
n ≥ c̄

√
Δtn . Notice that the second relation in (66) and (69) imply that, for n ∈ N

large enough,

0 <
∑

i∈IΔxn

ψi
(
pΔxn (yn)

) (−∂tφ(tk(n), xi )

+H(tk(n), xi , Dφ(tk(n)+1, xi ), D2φ(tk(n)+1, xi ), ā)
)
.

(70)

Therefore, inequality (68) with a = ā implies that for all b ∈ B

∑

i∈IΔxn

ψi
(
pΔxn (yn)

){ ∑

s∈I
d̃skn ,i (ā, b)

(
Ł̃s
kn ,i (Dφ(tk(n)+1, xi ), ā, b)

− √
ΔtnK s

k(n),i (ā, b)
) }

+ O
(
Δtn

√
Δtn + (Δxn)2

)
< 0.

(71)

Since the set I = {+,−} × {1, . . . , d} is finite, there exist ŝ ∈ I, {qs | s ∈
I\{ŝ}} ⊆ [0, 1], and i(n) ∈ IΔxn such that, up to some subsequence, d̃∗

n =
d̃ ŝk(n),i(n)(ā) and, for all s ∈ I\{ŝ}, d̃sk(n),i(n)(ā)/d̃∗

n → qs . Recall that d̃∗
n ≥ c̄

√
Δtn

and (Δxn)2/Δtn → 0 as n → ∞. Dividing (71) by d̃∗
n and taking the limit n → ∞

yields

(∀ b ∈ B)

⎛

⎝
∑

s∈I\{ŝ}
qs + 1

⎞

⎠Ł(t̄, x̄, Dφ(t̄, x̄), b) ≤ 0

and hence (∀ b ∈ B) Ł(t̄, x̄, Dφ(t̄, x̄), b) ≤ 0.

Thus, L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0, which contradicts (66).
(iii) (t̄, x̄) ∈ {T } × O. Let us first assume that (t̄, x̄) ∈ {T }×O. Thus, for n ∈ N large

enough, we have yn ∈ O. By taking a subsequence, if necessary, it suffices to
consider the cases sn ∈ [0, T ), for all n ∈ N, and sn = T , for all n ∈ N. In the
first case, proceeding as in (i), we get

− ∂tφ(t̄, x̄) + H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0. (72)

In the second case, (57) implies that uΔtn ,Δxn (sn, yn) = I [Ψ |GΔx ](yn) and hence
letting n → ∞ we get

u(t̄, x̄) = Ψ (x̄). (73)

Now, assume that (t̄, x̄) ∈ {T } × ∂O. As before, it suffices to consider the cases
sn ∈ [0, T ), for all n ∈ N, and sn = T for all n ∈ N. If sn ∈ [0, T ), then,
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proceeding as in (ii), we get

L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0 or − ∂tφ(t̄, x̄) + H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0.

(74)

Finally, if sn = T , for all n ∈ N, we have uΔtn ,Δxn (sn, yn) = I [Ψ |GΔx ](yn) and
hence (73) holds.
Altogether, (72) and (73) imply that (11) holds if (t̄, x̄) ∈ {T } × O, and (74) and
(73) imply that (12) holds if (t̄, x̄) ∈ {T } × ∂O.
Thus, from cases (i)–(iii) and Remark 1 we obtain that u is a subsolution to (HJB).

��
Theorem 2 Assume (H1)–(H3) and that (Δxn)2/Δtn → 0, as n → ∞. Then

uΔtn ,Δxn → u uniformly in OT ,

where u is the unique continuous viscosity solution to (HJB).

Proof By (58)wehaveu ≤ u inOT and, byProposition 5 and the comparison principle
for sub- and super solutions to (HJB) (see Remark 2(i)), we obtain that u ≥ u in OT .
Thus, u = u = u and the result follows from [3, Chapter V, Lemma 1.9]. ��
Remark 6 The previous result shows that our scheme is convergent under the same
conditions on the time and space steps than those in standard SL schemes when O =
R
d (see e.g. [23]). More precisely, compared to a standard explicit finite difference

scheme, the SL scheme is stable and convergent under an inverse CFL condition
Δx = O((Δt)2), which means that large time steps are allowed. A standard explicit
finite difference scheme would require a parabolic CFL condition Δt = O((Δx)2)
to be stable, whereas a standard implicit finite difference, which does not need a CFL
condition to be stable, would require to solve a linear system at each time step.

6 Numerical results

In this section, we present some numerical experiments in order to show the perfor-
mance of the scheme. We consider first a one-dimensional linear parabolic equation,
with homogeneous Neumann boundary conditions, and both the first and second order
cases. In the former, the boundary conditions are not satisfied in the pointwise sense
at every point in the boundary, but they hold in the viscosity sense (see Definition 1).
The second example deals with a degenerate second order nonlinear equation on a
smooth two-dimensional domain. We consider both non-homogeneous Neumann and
oblique derivatives boundary conditions. In the last example, we approximate the
solution to a non-degenerate second order nonlinear equation with mixed Dirichlet
and homogeneous Neumann boundary conditions on a non-smooth domain. Because
of the presence of Dirichlet boundary conditions and corners, the scheme has to be
modified and the convergence result in Sect. 4 does not apply. However, the scheme
can be successfully applied to solve the problem numerically.
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The equations in the first two tests have known analytical solutions. This will
allow to compute the errors of solutions to the scheme and to perform a numerical
convergence analysis. In the examples dealingwith two-dimensional domains,we have
considered unstructured triangular meshes, constructed with the Matlab2019 function
initmesh.

Our theoretical findings in Sects. 4 and 5 show that the scheme is stable for Δt ∼
(Δx)q for every q ∈ (0, 2] and convergent for q ∈ (0, 2).1 Let us justify, heuristically,
that among these choices the rate of convergence is maximized for q = 1. Indeed,
for internal nodes where the characteristics do not exit, the scheme coincides with the
standard semi-Lagrangian scheme for which the local truncation (or one time step)
error is of order (Δx)2 + (Δt)2 (see [14]), which yields a global in time truncation
error of order (Δx)2/Δt+Δt . On the other hand, for nodeswith characteristics exiting
the domain, Proposition 3 yields a local truncation error of order (Δx)2 + (Δt)3/2.
Since Lemma 3 provides a bound of order 1/

√
Δt on the expected number of time

steps where the characteristic exits the domain, we obtain a global truncation error of
order (Δx)2/

√
Δt) + Δt at these nodes. Summing up, the global truncation error is

of order (Δx)2/Δt +Δt which is maximized by choosing Δt ∼ Δx and the heuristic
optimal rate of convergence is 1.

In the first test, we consider the relations Δt ∼ Δx and Δt ∼ (Δx)3/2 between the
time and space steps. Choosing larger time steps, i.e. Δt ∼ (Δx)q , with q ∈ (0, 1)
may decrease accuracy, but not stability (see Remark 6).

Let us comment on the implementation of the scheme. We will consider three
examples, the first one deals with a backward HJB equation and the second and third
ones deal with a forward HJB equation. Notice that, since u solves (1) if and only if
u(T − ·, ·) solves (HJB), with H being replaced by H(T − ·, ·, ·, ·), we can compute
an approximationUk,i (k ∈ IΔt , i ∈ IΔx ) of u with the following forward and explicit
scheme

Uk+1,i = SN−k,i
[
Uk

]
, for (k, i) ∈ I∗

Δt × IΔx ,

U0,i = Ψ (xi ), for i ∈ IΔx .
(75)

In order to compute Sk,i (U ) for k ∈ I∗, i ∈ IΔx and U : GΔx → R, in the backward
and forward schemes (HJBdisc) and (75), respectively, we optimize by simply compar-
ing the values of Sk,i [U ](a, b), where (a, b) vary in a mesh defined over A × B. The
mesh size is chosen small enough in order to ensure that the dominant error is given by
the truncation error, due to the discrete operator Sk,i [U ](a, b) (see Proposition 3(i)).
More sophisticated optimization algorithms can be considered, as long as they are
derivatives free, since, because of the presence of the basis functions ψi , the function
Sk,i [U ](·, ·) is at most Lipschitz continuous. Observe that, by (25), (26), (28), and
(29), if the discrete characteristic ysk,i (a) /∈ O, for some s ∈ I, then we need to com-
pute ỹsk,i (a, b) which depends on c, dγb (ysk,i (a)) and pγb (ysk,i (a)). The parameter c is
chosen empirically in (0, 1) and its values are specified in all the tests below. On the
other hand, except for some particular cases, dγb (ysk,i (a)) and pγb (ysk,i (a)) cannot be

1 By Δt ∼ (Δx)q , we mean here that Δt is of the order of (Δx)q , i.e. there exists c > 0 such that
Δt = c(Δx)q .

123



76 E. Calzola et al.

computed explicitly and they have to be approximated by numerically solving equa-
tion (15). Recall that, by Proposition 1 and its proof, Eq. (15) is locally well-posed
around the boundary as soon as a smooth parametrization of ∂O is available. Once
ỹsk,i (a, b) is available, one computes its projection onto the triangulation TΔx .

6.1 A linear problem

The purpose of this simple example, which is an adaptation to the time-dependent case
of [17, Example 7.3], is twofold: first, to illustrate that solutions to (HJBdisc) capture
the correct behaviour of the solution at the boundary; and second, to show that time
steps smaller than Δt ∼ Δx do not improve the performance of the scheme.

Let ε > 0, set λ±
ε = (1±√

1 + 4ε)/2ε, and define

fε(t, x) = 3 − t

2

⎛

⎝1 +
eλ+

ε x
(
eλ−

ε − 1
)

eλ+
ε − eλ−

ε

(
1 − ελ+

ε

) +
eλ−

ε x
(
1 − eλ+

ε

)

eλ+
ε − eλ−

ε

(
1 − ελ−

ε

)
⎞

⎠

+ 1

2

⎛

⎝x +
eλ+

ε x
(
eλ−

ε − 1
)

eλ+
ε − eλ−

ε

+
eλ−

ε x
(
1 − eλ+

ε

)

eλ+
ε − eλ−

ε

⎞

⎠ ,

uε(t, x) = 3 − t

2

⎛

⎝x + eλ−
ε − 1

λ+
ε

(
eλ+

ε − eλ−
ε

)eλ+
ε x + 1 − eλ+

ε

λ−
ε

(
eλ+

ε − eλ−
ε

)eλ−
ε x

⎞

⎠ ,

for (t, x) ∈ [0, 1]2. Then uε is the unique classical solution to

−∂t u − ε∂2x u + ∂xu = fε in [0, 1) × (0, 1),
∂xu(·, 0) = ∂xu(·, 1) = 0 in [0, 1),
u(1, ·) = uε(1, ·) in [0, 1]

(76)

and

uε(t, x) −→
ε→0

u0(t, x) := 3 − t

2

(
x + e−x)

, uniformly on [0, 1]2.

Notice that, setting

f0(t, x) = 3 − t

2
(1 − e−x ) + 1

2
(x − e−x ) for (t, x) ∈ [0, 1]2,

u0 solves the PDE

−∂t u + ∂xu = f0 in [0, 1) × (0, 1),
∂xu(·, 0) = ∂xu(·, 1) = 0 in [0, 1),
u(1, ·) = u0(1, ·) in [0, 1],

(77)
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Fig. 4 Exact final condition uε(1, ·) (left) and numerical approximations of uε(0, ·) (right) for ε = 0.05,
ε = 0.03, and ε = 0, with step sizes Δx = 6.25 × 10−3 and Δt = Δx/2

Table 1 Errors and convergence rates for problem (76) with ε = 0.05 and c̄ = 0.5

Δx Δt = 2(Δx)3/2 Δt = Δx/2

E∞ E1 p∞ p1 E∞ E1 p∞ p1

5.00 × 10−2 2.68 × 10−2 2.66 × 10−2 – – 2.02 × 10−2 1.89 × 10−2 – –

2.50 × 10−2 1.49 × 10−2 1.33 × 10−3 0.85 1.00 1.11 × 10−2 1.05 × 10−3 0.86 0.85

1.25 × 10−2 8.31 × 10−3 6.67 × 10−3 0.84 1.00 4.86 × 10−3 4.51 × 10−3 1.19 1.22

6.25 × 10−3 6.17 × 10−3 4.82 × 10−3 0.84 0.47 2.81 × 10−3 2.73 × 10−3 0.79 0.72

the boundary condition being satisfied in the viscosity sense but not in the pointwise
sense. Indeed, ∂xu0(t, 1) > 0 and −∂t u0(t, 1) + ∂xu0(t, 1) − f0(t, 1) ≤ 0 for all
t ∈ [0, 1].

Using (HJBdisc), we approximate uε for ε = 0.05, ε = 0.03, and ε = 0. For these
choices, we plot in Fig. 4 the final data uε(1, ·) and the approximation of uε(0, ·)
computed with the steps sizes Δx = 3.125 · 10−3 and Δt = Δx/2. The plot on
the right, shows that the numerical solution correctly captures the behaviour of u0
at the boundary point x = 1. Let us point out that, in general, this is not the case
for finite difference schemes, which need a special treatment in order to capture the
correct behaviour of the viscosity solution at the boundary (see e.g. [1, Section 5.1.2]).
Denote by U ε the approximation of uε and consider the errors

E∞ = max
i∈IΔx

|U ε
0,i − uε(0, xi )|, E1 = Δx

∑

i∈IΔx

|U ε
0,i − uε(0, xi )|.

In Tables 1 and 2we show the values of E∞ and E1 as well as the corresponding
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Table 2 Errors and convergence rates for problem (76) with ε = 0 and c̄ = 0.05

Δx Δt = 2(Δx)3/2 Δt = Δx/2

E∞ E1 p∞ p1 E∞ E1 p∞ p1

5.00 × 10−2 2.47 × 10−2 1.91 × 10−2 – – 2.26 × 10−2 1.86 × 10−2 – –

2.50 × 10−2 1.14 × 10−2 1.01 × 10−2 1.12 0.92 1.15 × 10−2 9.97 × 10−3 0.97 0.90

1.25 × 10−2 5.86 × 10−3 5.73 × 10−3 0.96 0.82 5.88 × 10−3 5.42 × 10−3 0.97 0.88

6.25 × 10−3 3.49 × 10−3 3.27 × 10−3 0.75 0.81 3.04 × 10−3 2.97 × 10−3 0.95 0.87

convergence rates p∞ and p1 for Δt ∼ (Δx)3/2, Δt ∼ Δx , and different values of
ε and c. The proof of Lemma 3 suggests to take large c for large diffusion terms in
order to preserve stability. With this choice, the larger the value of ε, the more the
characteristics are reflected further into O. In both tables, we observe an order of
convergence close to 1 and, as expected, we do not see an improvement by choosing
Δt ∼ (Δx)3/2 instead of Δt ∼ Δx .

6.2 Nonlinear problem on a circular domain

Let T = 1, O = {x = (x1, x2) ∈ R
2 | |x | < 1}, and

σ(t, x) = √
2(sin(x1 + x2), cos(x1 + x2))

f (t, x) =
(
1

2
− t

)
sin(x1) sin(x2) +

(
3

2
− t

) (√
cos2(x1) sin2(x2) + sin2(x1) cos2(x2)

− 2 sin(x1 + x2) cos(x1 + x2) cos(x1) cos(x2)

)
,

g(t, x) =
(
3

2
− t

)
(x1 cos(x1) sin(x2) + x2 sin(x1) cos(x2)) .

Then OT � (t, x1, x2) �→ ū(t, x1, x2) = ( 3
2 − t

)
sin(x1) sin(x2) is the unique

classical solution to

∂t u − 1
2Tr(σσ�D2u) + |Du| = f in OT ,

〈n, Du〉 = g in [0, T ) × ∂O,

u(0, x) = ū(0, x) in O.

(78)

In Fig. 5, we show the numerical solution U to the above forward degenerate HJB
equation at the final time T = 1, computed on an unstructured triangular mesh GΔx

with mesh size Δx = 1.25 · 10−1. On the left, we plot the result together with the
contour lines. On the right, we plot the approximation together with the mesh used to
compute it.

Given an element T̂ of the triangulation, we denote by xT̂ its barycentre and by |T̂ |
its area. We show in Tables 3 and 4 the errors
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Fig. 5 Numerical solution at time T = 1 of problem in Sect. 6.2 with Neumann boundary condition,
computed with Δx = 0.125 and Δt = Δx/2

Table 3 Errors and convergence rates for the approximation of (78) with c̄ = 0.25

Δx Δt = Δx Δt = Δx/2

E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 × 10−1 2.73 × 10−1 2.95 × 10−1 – – 1.22 × 10−1 1.07 × 10−1 – –

1.25 × 10−1 1.24 × 10−1 1.12 × 10−1 1.14 1.40 5.54 × 10−2 4.57 × 10−2 1.14 1.24

6.25 × 10−2 5.55 × 10−2 4.72 × 10−2 1.16 1.24 2.39 × 10−2 2.11 × 10−2 1.21 1.11

3.125 × 10−2 2.49 × 10−2 2.16 × 10−2 1.16 1.13 1.22 × 10−2 1.10 × 10−2 0.97 0.94

Table 4 Errors and convergence rates for the approximation of (78) with c̄ = 0.5

Δx Δt = Δx Δt = Δx/2

E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 × 10−1 2.65 × 10−1 2.55 × 10−1 – – 1.18 × 10−1 1.02 × 10−1 – –

1.25 × 10−1 1.23 × 10−1 1.12 × 10−1 1.11 1.19 5.60 × 10−2 4.72 × 10−2 1.08 1.11

6.25 × 10−2 5.74 × 10−2 5.06 × 10−2 1.10 1.15 2.64 × 10−2 2.27 × 10−2 1.08 1.06

3.125 × 10−2 2.70 × 10−2 2.39 × 10−2 1.09 1.08 1.22 × 10−2 1.10 × 10−2 1.11 1.05

E∞ = max
i∈IΔx

|UNT ,i − ū(tNT , xi )|, E1 =
∑

T̂∈TΔx

|T̂ |∣∣I [UNT ,(·)](xT̂ ) − ū(tNT , xT̂ )
∣∣,

(79)

and the corresponding convergence rates p∞ and p1. In each table, we specify in the
first column the mesh size Δx . To obtain the results shown in Tables 3 and 4, we have
chosen c̄ in (25) and (26) as c̄ = 0.25 and c̄ = 0.5, respectively. For both choices of
c̄, we observe similar errors and an analogue behaviour of the convergence rates. As
in the previous example, an order of convergence close to 1 is obtained.
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Table 5 Errors and convergence rates for the approximation of (80) with c̄ = 0.25

Δx Δt = Δx Δt = Δx/2

E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 × 10−1 3.06 × 10−1 4.38 × 10−1 – – 1.50 × 10−1 2.08 × 10−1 – –

1.25 × 10−1 1.56 × 10−1 2.25 × 10−1 0.97 0.96 7.96 × 10−2 1.17 × 10−1 0.91 0.83

6.25 × 10−2 8.10 × 10−2 1.21 × 10−1 0.95 0.89 4.36 × 10−2 6.84 × 10−2 0.88 0.77

3.125 × 10−2 4.47 × 10−2 7.17 × 10−2 0.86 0.75 2.58 × 10−2 4.26 × 10−2 0.76 0.68

Table 6 Errors and convergence rates for the approximation of (80) with c̄ = 0.5

Δx Δt = Δx Δt = Δx/2

E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 × 10−1 2.94 × 10−1 3.81 × 10−1 – – 1.42 × 10−1 1.69 × 10−1 – –

1.25 × 10−1 1.49 × 10−1 1.88 × 10−1 0.98 1.02 7.22 × 10−2 8.56 × 10−2 0.98 0.98

6.25 × 10−2 7.55 × 10−2 9.33 × 10−2 0.98 1.01 3.79 × 10−2 4.63 × 10−2 0.93 0.89

3.125 × 10−2 3.95 × 10−2 5.02 × 10−2 0.93 0.89 2.12 × 10−2 2.75 × 10−2 0.84 0.75

Next, we consider the same problem but with oblique derivatives boundary
conditions. More precisely, for x = (x1, x2) ∈ ∂O we set

γ (x) = (x1 cos(π/6) + x2 sin(π/6), x2 cos(π/6) − x1 sin(π/6))

and

g̃(t, x) =
(
3

2
− t

) [
(x1 cos(π/6) + x2 sin(π/6)) cos(x1) sin(x2)

+ (x2 cos(π/6) − x1 sin(π/6)) sin(x1) cos(x2)
]

in [0, T ) × ∂O.

Then ū is the unique classical solution to

∂t u − 1
2Tr(σσ�D2u) + |Du| = f in OT ,

〈γ, Du〉 = g̃ in [0, T ) × ∂O,

u(0, x) = ū(0, x) in x ∈ O.

(80)

The solution ū is approximated by using the same unstructured meshes as in the
previous case. We show in Tables 5 and 6 the errors (79) computed with c̄ = 0.25
and c̄ = 0.5, respectively. As in the previous case, we observe similar errors and an
analogue behaviour of the convergence rates for both choices of c̄. We also observe a
slight degradation of the errors and convergence rates in the case of oblique derivatives
boundary conditions. This could be explained by the need to approximate the solution
to (15) every time a characteristic exits the domain.
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Fig. 6 Solution at time T = 3 with Δx = 0.01, Δt = Δx , and c = 0.25

6.3 Nonlinear problem on a non-smooth domain withmixed Dirichlet–Neumann
boundary conditions

In this last example, we deal with a problem of exiting from a bounded rectangular
domain with a circular obstacle inside of it. We model this problem by considering
a modification of (1) including mixed Dirichlet-Neumann boundary conditions, with
a large time horizon T in order to reach a stationary solution. We consider the space
domain

O =
(

(−1, 1) × (−0.5, 0.5)

)
\ {x ∈ R

2 | |x − (−0.5, 0)| ≤ 0.2},

a control set A = {a ∈ R
2 | |a| = 1}, a drift μ(t, x, a) = a, a diffusion coefficient

σ(t, x, a) = 0.1I2, where I2 is the identity matrix of size 2, a running cost f ≡ 1,
and an initial condition Ψ ≡ 0. We impose constant Dirichlet boundary conditions on
some parts of ∂O, representing the exits of the domain, in order to model some exit
costs. More precisely, Dirichlet boundary conditions (or exit costs) u = 0 and u = 0.2
are imposed on ∂O1 = {x = (x1, x2) ∈ ∂O | x1 = −1, |x2| ≤ 0.2} and ∂O2 = {x =
(x1, x2) ∈ ∂O | x1 = 1, |x2| ≤ 0.2}, respectively. We also consider homogeneous
Neumann boundary conditions on the remaining part of the boundary. Because of
the mixed boundary conditions, we approximate the solution to the HJB equation
by combining scheme (HJBdisc), to deal with the Neumann boundary condition, and
the scheme proposed in [11], to deal with the Dirichlet boundary condition. In the
latter, if the characteristic exits through ∂O1 ∪ ∂O2, we approximate the solution
by extrapolation using an additional layer of coarser elements inside O, with a side
belonging to ∂O1 ∪ ∂O2, and the Dirichlet condition. For a more detailed discussion,
including the size of the elements in the coarser grid, which ensures stability of the
scheme, we refer the reader to [10, Section 5]. Let us point out that this approximation
has been shown to be more accurate with respect to the methods proposed in [11, 40].

We show in Fig. 6 the numerical approximation computed on an unstructured mesh
of size Δx = 0.01, a time step Δt = Δx and final time T = 3. Figure7displays the
quiver plot of −Du at time T = 3.
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Fig. 7 Quiver plot of −Du at time T = 3
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