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Abstract

We provide an algorithm for solving multidimensional screening problems which

are intractable analytically. The algorithm is a primal-dual algorithm which al-

ternates between optimising the primal problem of the surplus extracted by the

principal and the dual problem of the optimal assignment to deliver to the agents

for a given surplus. We illustrate the algorithm by solving (i) the generic monopolist

price discrimination problem and (ii) an optimal tax problem covering income and

savings taxes when citizens differ in multiple dimensions.

1 Introduction

We provide an algorithm that solves any principal agent problem of the following form:

max
y,U

N∑
i=1

fi[Si(yi)− λUi] (1)

subject to incentive compatibility conditions for all (i, j)

Ui − Uj ≥ Λij(yj) := bi(yj)− bj(yj) (2)

and individual rationality conditions for all i

Ui ≥ 0. (3)
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The interpretation of this problem is the following. A principal wants to assign different

goods, or bundles of goods, to a population of agents who can be of different types

i = 1, .., N . Types are not publicly observable. The mass of agents of type i is denoted

fi > 0. The function Si(yi) measures the surplus generated for the principal by agent

i when she receives assignment yi, Ui is agent i’s utility, and λ > 0 is a weight applied

by the principal to the agents’ utility. We give below two examples that will be used for

illustrating how our algorithm works.

This is a standard screening problem, but a general solution does not exist in large

part due to the fact that in a multidimensional context there is no natural ranking of the

agents. This means the binding constraints are not ex ante identifiable and frustrates

local analyses. This contrasts with the case of one dimensional types when the Single

Crossing Condition holds. In this one dimensional setting the local downward incentive

compatibility constraints are binding for all types, allowing a global problem to be con-

verted into a series of local optimisations which can be solved easily (Mussa and Rosen

(1978)). In the multi-dimensional setting the direction of the binding incentive compat-

ibility constraints can be subject to many variations which in turn can lead to rich new

features in the optimal solution to the canonical principal agent problem.

We therefore move beyond the one-dimensional analysis which has dominated research

thus far. Thanks to the characterization of implementability that was given in Rochet

(1987)1, we can reformulate our screening problem into a max min problem. Our algorithm

is an extension of the powerful algorithm proposed by Chambolle and Pock (2011) for

solving such max min problems.

2 Motivations

Although there are many economic problems to which our algorithm can be applied, we

will focus on two particular applications: the multidimensional version of the multiproduct

monopolist problem studied by Rochet and Choné (1998), and the joint taxation of labour

and savings income.

2.1 Multiproduct Monopolist

Rochet and Choné (1998) have studied the multidimensional extension of the multiprod-

uct monopolist problem of Mussa and Rosen (1978). They established that pooling, i.e.

different types receiving the same assignment (this is also called bunching), is a general

feature of optimal screening in multiple dimensions. This has important consequences,

and makes analytical solutions hard, except in special cases. When the distribution of

types is discrete, the informational rent of agents (see below for a formal definition) is a

1Rochet (2023) surveys the literature on multidimensional screening that has followed that article.
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non-differentiable function of assignments in the pooling region. When the distribution of

types is continuous, the Euler-Lagrange equation that characterizes solutions of control

problems is not satisfied in the pooling region. Our algorithm overcomes these difficulties

by using two ingredients: the use of proximal functions for avoiding non-differentiability

problems, and a primal-dual approach to take into account the different expressions taken

by the informational rent when different incentive compatibility constraints are binding.

Our algorithm determines these endogenous pooling groups and binding incentive compat-

ibility constraints as it proceeds through the optimisation process. Using our algorithm

we are able to solve the discrete version of this monopolist pricing problem for an arbitrary

number of types.

As a specific example, consider a monopolist selling a durable good (say a car) that

can be designed in several specifications represented by a vector of characteristics y ∈ Rd.

The dimension d represents the number of different features upon which the product can

be differentiated, and each individual component (yi) in the vector y can be thought of

as the quality level of that feature offered. The cost of producing one unit of the good

with overall characteristics y is a convex function C(y). The utility of buying this good

for agent i = 1, .., N is quasi-linear:

Ui = θi.yi − pi,

where the vector θi ∈ Rd represents the willingness to pay for a unit of quality across all the

available dimensions of the good and (yi, pi) is the combination of characteristics and price

that is designed for agents of type i. The firm wants to select the menu (yi, pi), i = 1, ..., N

of characteristics and prices that maximizes its profit∑
i

fi[pi − C(yi)] =
∑
i

fi [θi.yi − C(yi)− Ui] , (4)

under the constraint that, for all i, agents of type i buy the product yi at price pi. This

constraint can be decomposed into two conditions on individual utilities Ui = θi · yi − pi:

Ui ≥ θi · yj − pj = Uj + (θi − θj) · yj,

for all i, j, expressing that agent i prefers the combination (yi, pi) that was designed for

him to any combination (yj, pj) designed for another agent j, and

Ui ≥ 0,

expressing the participation constraint of agent i. This is a particular case of our general
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problem if we take

Si(yi) = θi.yi − C(yi), bi(yi) = θi · yi, λ = 1.

Rochet and Choné (1998) consider a continuous version of this model and show that

the solution necessarily involves some degree of pooling. Of course, pooling may already

appear in dimension 1, but it can be ruled out by assuming a monotone likelihood property

of the distribution of types. Armstrong (1996) shows that a simple form of pooling

is generic in multidimensional screening problems: a positive measure of consumers is

typically excluded. Rochet and Choné (1998) extend this result by showing that a second

form of pooling is also typical of multidimensional problems: low type consumers are

often offered a reduced set of products. Only high types are offered a wide set of products

that are tailored to their taste differences. By contrast, low quality products are less

differentiated and each of them is bought by a positive measure of consumers. Our

algorithm allows us to characterise precisely the product range a monopolist would choose

to have so as to optimally manage the allocation of its products to its clients.

2.2 Joint taxation of saving and labour incomes

The question of the optimal mix between labor and capital taxes is very old. However,

influential books by Piketty (2014) or Saez and Zucman (2019) have recently restarted

the debate. These books recommend a more comprehensive taxation of inheritance and

savings. Such taxes, it is argued, would reduce inequality and would provide additional

fiscal resources without distorting too much the employment and consumption choices of

individuals and the investment decisions of firms.

However, most of the academic literature on optimal taxation, starting from the in-

fluential papers of Chamley (1986) and Judd (1985), argue on the contrary that capital

(and by extension all financial activities) should not be taxed in the steady state of a

standard economy when optimal income taxation is possible. The modern approach to

optimal taxation, initiated by Mirrlees (1971), also recommends that capital should not

be taxed at all: see in particular Atkinson and Stiglitz (1976) and Diamond and Mirrlees

(1971).

But these results are not valid when heterogeneity between individuals is multidimen-

sional. Labour income is one tool which can be used to screen the population, but with

multiple dimensions more tools can be valuable. For example, Saez (2002) shows that tax-

ing capital income is optimal when more productive people have a higher propensity to

save – the tax on capital alongside labour allowing for better screening outcomes. Mirrlees

(1976) himself was well aware of the fact that most of his results relied on the restric-

tive assumption that labor productivity is the only source of unobservable heterogeneity

among individuals, an assumption that he adopted for pure tractability reasons.
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Many papers have tried to extend the Mirrlees (1971) model to several dimensions of

heterogeneity, but technical difficulties have hindered progress: we know very little about

multidimensional screening problems in general. Explicit results have been obtained for

particular distributions of types: Wilson (1993) for nonlinear pricing, Armstrong (1996)

for multi-good monopoly pricing, Rochet and Choné (1998) for the hedonic version of the

same model, Rochet and Thanassoulis (2019) for dynamic versions of the screening prob-

lem, and Rochet (2009) for the regulation of firms with different marginal and fixed costs.

Their results show that the solution pattern may differ markedly from that of the unidi-

mensional case. However, these results are only valid for very peculiar parametrizations

of heterogeneity.

The recent literature on multidimensional screening has explored no less than five

different approaches to overcome these difficulties.

The first approach is to make assumptions on preferences and technology such that

the multidimensional problem reduces to a one-dimensional screening problem. This is

what Kleven et al. (2009) have done in their analysis of the optimal taxation of couples.

Similarly, Choné and Laroque (2010) consider an optimal taxation problem with two

dimensions of heterogeneity (labour productivity and the opportunity cost of labour)

but they simplify the incentive problem by assuming that individual labour supply only

depends on a unidimensional combination of the two parameters. Beaudry et al. (2009)

use similar simplifications in their analysis of employment subsidies.

A second approach is to assume that the government only has one instrument, e.g.

taxing total income, independently of its composition. Rothschild and Scheuer (2013,

2016) study the general equilibrium impact of taxation in a multisector economy where

agents have different (unobservable) productivities in the different sectors. Similarly, by

adapting the techniques introduced by Rochet and Stole (2002) for non-linear pricing,

Jacquet et al. (2013) study the taxation of labor income when individuals differ in two

dimensions: skill and cost of participating in the labour market, whilst the government

can only tax labour income.

A third approach is the variational approach of Golosov et al. (2014) for continuous

distributions of types. Roughly speaking, the idea is to compute the (Gateaux) differ-

ential of social welfare with respect to the different policy instruments available to the

government (here the different taxes). This allows one to analyze the impact of (infinites-

imal) tax reforms.2 This amounts to a calculus of variations problem constrained by a

partial differential equation. The problem is that the approach is only valid when there

is no bunching, i.e. different types always get different allocations. However, bunching is

very frequent in multidimensional screening problems.

2Similarly, Renes and Zoutman (2017) adopt a mechanism design approach and solve the relaxed
problem (first order approach) where the second order conditions of individuals’ optimization programs
are neglected.
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A fourth approach is purely numerical. Tarkiainen and Tuomala (1999, 2007) consider

an income tax model where individuals differ by their productivity and their cost of labor

participation. They develop numerical methods that allow them to solve this problem

for particular specifications of preferences and type distributions. Similarly, Judd et al.

(2017) use a non-standard optimization algorithm to solve particular specifications of

highly complex taxation problems with 5 dimensions of heterogeneity. However, none

of these papers provide a convergence theorem. As acknowledged by Tarkianen and

Tuomala, these numerical approaches seem to work for special parametrizations but there

is no guarantee that the algorithms would also converge for other specifications. A more

promising approach is developed in Boerma et al.(2022), who use Legendre transforms

to transform the screening problem into a linear program. They are able to numerically

solve a large scale multidimensional tax problem that is calibrated to the US economy.

Finally, the fifth approach is only illustrative: it focuses on 2× 2 models with two di-

mensions of heterogeneity and two possible values for each parameter. Using the method-

ology introduced by Armstrong and Rochet (1999), such models are fully solvable. For

example, Cremer et al. (2001, 2003) show that taxing capital and luxury goods can be

optimal in a 2 × 2 model where individuals differ in their initial endowments as well as

their labour productivities. Similarly, Boadway et al. (2002) show that negative marginal

tax rates can be optimal in a 2× 2 model where individuals differ by their preferences for

leisure as well as their labor productivity. The problem is that these models are purely

illustrative: the need to restrict to 2 × 2 types means they cannot be calibrated to real

data.

We examine a simple extension of the Mirrlees optimal tax problem to the case where

agents have two dimensions of heterogeneity: their initial endowments ei and their disutil-

ities of working xi. Agents consume at two dates t = 1, 2 and have quasi linear preferences:

Vi = u(C1
i ) + C2

i = u(ei − si) +Rsi + (w − xi)li − Ti,

where yi = (si, li) denote the (observable) decisions of agent i : savings si and labor

supply 0 ≤ li ≤ 1. Ti denotes the total tax paid by agent i. R is the return on savings

and w the unit wage. Both are exogenous and uniform across agents. The principal seeks

the tax system that maximizes a weighted sum of a Rawlsian objective and utilitarian

welfare:

W = λmin
j

Vj + (1− λ)
∑
i

fiVi, (5)

with 0 ≤ λ ≤ 1, under the constraint that tax revenue is sufficient to finance public

expenditures of G, which is taken as exogenously given. Note that no participation

constraints are required in this context of obligatory tax. However, the problem can be put

into our general form by defining incremental utilities by Ui = Vi−minj(Vj), which implies
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by definition that Ui ≥ 0 for all i. Moreover, if we set Si(yi) = u(ei−si)+Rsi+(w−xi)li,

and using that
∑

i fiTi = G, the objective of the principal can be rewritten, up to a

constant:

W =
∑
i

fi[Si − λUi]. (6)

It is easy to see that this program is a particular case of the general problem when

Si(yi) = u(ei − si) +Rsi + (w − xi)li, (7)

and

bi(y) = u(ei − s)− lxi.

An interesting economic question, which a solution to (5) would allow us to address,

is whether the taxation of savings should be independent of labour income. In particular,

should savings be taxed more heavily for employed or unemployed people? The involved

trade-off can be understood by looking at a model with two dimensional types and two

possible values for each dimension: taxpayers may have a low or high cost of participating

in the labour force, and a low or high initial endowment. Given the preferences, a separa-

ble tax schedule would imply that savings and labour supply decisions are independent:

labour supply only depends on the first dimension of heterogeneity (the personal disul-

tility of working and so participating in the labour force), while savings only depend on

the second dimension (initial endowments). We will see in Section 7 that in general, for

some parameter values, greater societal welfare is generated if the planner conditions the

tax on savings on the citizen’s workforce status. This can be seen by direct computations

in the 2× 2 model, but it very hard to assess in a calibrated model that reproduces data

more accurately. Our algorithm allows us to solve such models without having to assume

unrealistic distributions of types.

3 Problem Preliminaries

For the sake of simplicity, we only discuss the case where the assignment y can be any

vector in Rd.3 We assume that the functions bi and Si are smooth for all i. There are N

types, with weights in the population fi > 0. For an easy representation of the constraints,

we define the linear operator D: RN → RN×(N−1) by

(Du)ij := ui − uj,

where RN×(N−1) denotes the set of N ×N matrices with zero entries on the diagonal.

3The extension to the case where the yi’s are constrained to lie in a certain box of Rd, possibly
dependent on i, is straightforward.

7



The scalar product4 of Du with a vector v in RN×(N−1) is thus

(Du) · v =
∑
i,j

(ui − uj)vij =
N∑
i=1

N∑
j=1

(vij − vji)ui.

The adjoint D∗ of this operator is the linear mapping from RN×(N−1) to RN defined

by

(D∗v) · u = (Du) · v, ∀(u, v) ∈ RN × RN×(N−1).

Hence, it is given, for all i, by:

(D∗v)i :=
N∑
j=1

(vij − vji).

We shall also use the more concise notation Λ for the map appearing in the right-hand

side of (2). For y = (y1, ..., yN) ∈ Rd×N and all (i, j):

Λij(y) = bi(yj)− bj(yj).

Setting S(y) :=
∑

i fiSi(yi), the screening problem (1)-(2)-(3) can be rewritten as

max
y,U

{(S(y)− λf · U) : DU ≥ Λ(y), U ≥ 0}

where the notation A ≥ B for matrices (respectively vectors) A and B means that A−B

has all nonnegative entries (respectively coordinates). Existence of a solution and first-

order optimality conditions are given by:

Proposition 1 Assuming that for every i

Si(yi) → −∞ as |yi| → ∞, (8)

then (1)-(2)-(3) admits at least a solution. Let (y, U) be such a solution, and let A be the

set of binding IC constraints, i.e. the set of (i, j)’s for which U i −U j = Λij(yj). If either

Λ is linear or the IC constraints are qualified at (y, U) i.e. there exist ŷ, û such that

ûi − ûj > ∇Λij(yj)ŷj, ∀(i, j) ∈ A. (9)

then there exist multipliers µi ≥ 0 (for the IR constraints (3)), multipliers vij ≥ 0 (for

the IC constraints (2)) such that:

λf = µ+D∗v, fj∇Sj(yj) =
∑
i

vij∇Λij(yj), ∀j (10)

4This is the standard scalar product for vectors, and not the matrix product.
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together with the complementary slackness conditions:

µiU i = 0, vij(DU − Λ(y))ij = 0. (11)

Proof. Condition (8) and the constraint U ≥ 0, guarantee that one can reduce the

maximization problem to a compact set for the yi’s so that Λij(yj) can be bounded a

priori. One can also choose U such that mini Ui = 0, but the IC constraint imposes that

Uj ≤ mini Ui+maxkl −Λkl(yl) so that the Ui’s can also be chosen to remain in a bounded

set, we are therefore left to maximizing a continuous function over a compact set and the

existence claim follows. The necessity of the first-order optimality conditions (10)-(11)

for nonnegative multipliers µ and v follows from the Karush-Kuhn-Tucker Theorem: see

e.g. Carlier (2022) Proposition 4.9 for the case of affine constraints and Theorem 4.5 for

nonlinear constraints satisfying the qualification condition (9).

Let us briefly comment the assumptions in the previous proposition. First observe that

(8) is automatically satisfied in the Multiproduct Monopolist problem as soon as the cost

C is superlinear i.e. C(y)/|y| → +∞ as |y| → +∞. As for the qualification condition,

Lemma 1 in the Appendix gives a simple case where the condition (9) is easily obtained.

Note also that when Λ is linear and the Si’s are concave, the first-order conditions (10)-

(11) are sufficient conditions.

4 Feasibility, informational rent and duality

The aim of this section is to reformulate the generic principal-agent model (1)-(2)-(3) in

terms of the assignment vector y only.

4.1 Feasibility

Let us first introduce a definition:

Definition 1 Let Λ ∈ RN×(N−1) be a matrix with zero diagonal entries. We will say that

Λ is feasible whenever there exists U ∈ RN such that DU ≥ Λ.

Since DU is unchanged when adding a constant to U , one sees that feasibility of Λ is

the same as the existence of a U ∈ RN such that U ≥ 0 and DU ≥ Λ. Since Λii = 0 the

feasibility condition DU ≥ Λ can be rewritten as requiring the existence of U such that

U = TΛ(U) where TΛ is the self-map of RN given by

TΛ(U)i := max
j

{Uj + Λij}. (12)

This characterisation of feasibility, results from the application of Theorem 1 in Rochet

(1987) to our context. Formally we have
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Proposition 2 Let Λ ∈ RN×(N−1) (with Λii = 0). The following are equivalent:

1. Λ is feasible,

2. Whenever i0, . . . iL, iL+1 = i0 is a cycle in the set of indices in {1, . . . , N}, one has

L∑
k=0

Λikik+1
≤ 0. (13)

3. Defining TΛ by (12), the sequence starting from u0 = 0 and inductively defined by

un+1 = TΛ(u
n) for n ≥ 1 converges (monotonically and in at most N − 1 steps) to

the smallest nonnegative fixed point of TΛ.

Proof. Suppose Λ is feasible, let U be such that Ui − Uj ≥ Λij for every i, j. If

i0, . . . iL, iL+1 = i0 is a cycle, then

L∑
k=0

Λikik+1
≤

L∑
k=0

(Uik − Uik+1
) = 0

so that 1. ⇒ 2.

Assume that Λ satisfies (13) and define un by u0 = 0 and un+1 = TΛ(u
n) for n ≥ 1.

We will show that uN = uN−1. Since Λii = 0, we have 0 ≤ un ≤ un+1 in particular

uN ≥ uN−1. One easily checks inductively that

un
i = max

{ n−1∑
k=0

Λikik+1
: i0 = i, i1, . . . , in ∈ {1, . . . , N}n}. (14)

Therefore uN
i =

∑N−1
k=0 Λikik+1

for some i1, . . . , iN ∈ {1, . . . , N}N and i0 = i. Necessarily

ik = il+1 for some pair of indices k and l such that 0 ≤ k ≤ l ≤ N − 1. Hence, thanks to

(13) we have
l∑

j=k

Λijij+1
≤ 0

so that

uN
i ≤

∑
j∈{0,..,N−1}\{k,...,l}

Λijij+1
≤ uN−1

i

where the last inequality follows from (14) and the fact that ik = il+1. This shows that

un = uN−1 for n ≥ N − 1 so that un converges to a nonnegative fixed point of TΛ in at

most N − 1 steps. If u is a nonnegative fixed point of TΛ, monotonicity of TΛ and an

obvious induction argument show un ≤ u which implies that un converges to the smallest

nonnegative fixed point of TΛ. So we have 2. ⇒ 3.
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If 3. holds, there exists u ≥ 0 such that u = TΛ(u), hence ui − uj ≥ Λij i.e. Λ is

feasible, and so 3. ⇒ 1.

Note that part 3 of Proposition 2 gives a constructive way to solve DU ≥ Λ(y), U ≥ 0

when Λ(y) is feasible. The minimality of the fixed point TN−1
Λ (0) also implies:

Corollary 1 If Λ is feasible, the least nonnegative fixed-point of TΛ, u = TN−1
Λ (0) is the

unique solution of

min
{∑

i

fiUi : DU ≥ Λ, U ≥ 0
}

for every collection of positive weights fi > 0.

A dual characterization of feasibility (upon which our algorithm will in part rely) is

the following:

Lemma 1 Let Λ ∈ RN×N (with Λii = 0). Then Λ is feasible if and only if for every

v ∈ RN×N , (
v ≥ 0 and D∗v = 0

)
⇒ v · Λ ≤ 0.

Proof. If Λ is feasible, there exists U such that Λ ≤ DU . Hence if v ≥ 0 and D∗v = 0

we have v ·DU = 0 ≥ v · Λ. Conversely, suppose that Λ is not feasible: it is impossible

to find U and a matrix M ≥ 0 such that −Λ = D(−U) +M . Geometrically this means

that −Λ /∈ D(RN) + RN×N
+ . The set D(RN) + RN×N

+ is clearly convex, we claim that it

is also closed. To show this, take a sequence µn ∈ RN×N
+ , another sequence un ∈ RN and

assume that µn +Dun converges. Since the sum of the entries of Dun vanishes and µn is

nonnegative, the convergence of the sum of the entries of µn implies that µn is bounded.

Hence it has a convergent subsequence, which implies that Dun also has a convergent

subsequence. Since D(RN) is closed, the limit of this subsequence of µn + Dun belongs

to D(RN) +RN×N
+ . We can therefore strictly separate −Λ from D(RN) +RN×N

+ i.e. find

v ∈ RN×N and ε > 0 such that

−v · Λ ≤ −ε+ v · µ+ v ·Du, ∀(µ, u) ∈ RN×N
+ × RN

Suppose now that v · Du < 0 for some u ∈ RN . Multiplying this vector u by a large

positive constant gives a contradiction. Similarly if v ·Du > 0, multiplying u by a large

negative constant gives a contradiction. Thus it must be that v ·Du = 0 for all u ∈ RN

i.e. D∗v = 0. By a similar reasoning on µ, the above condition implies v ≥ 0 and also

v · Λ ≥ ε > 0 which is the desired conclusion.
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4.2 Informational rent and duality

For fixed assignment vector y, the informational rent R(y) left to the agents is defined by

the value of the sub-problem:

R(y) := inf
{∑

i

fiUi : Ui ≥ 0, Ui − Uj ≥ Λij(yj)
}
. (15)

The interpretation is that R(y) is the minimum expected pay-off that must be left to the

agents in order to implement the assignment y. We adopt the convention that inf ∅ = +∞
so that R(y) = +∞ whenever Λ(y) is not feasible. The next proposition gives a dual

expression for the informational rent, for which it is convenient to introduce the closed

and convex (but unbounded) set

K := {v ∈ RN×(N−1) : v ≥ 0, D∗v ≤ λf}, (16)

as well as its support function:

σK(Λ) := sup{v · Λ : v ∈ K}, ∀Λ ∈ RN×(N−1).

Proposition 3 The informational rent R(y) is the value of the dual problem:

R(y) = sup
{
v · Λ(y) =

∑
i,j

vijΛij(yj) :
∑
j

(vij − vji) ≤ fi, vij ≥ 0
}

(17)

We thus have

λR(y) = σK(Λ(y)). (18)

Moreover whenever Λ(y) is feasible, there exists v ∈ K such that λR(y) = v · Λ(y).

Proof. If Λ(y) is not feasible, then R(y) = +∞ and it follows from Lemma 1 that there

is some v0 ≥ 0 such that D∗v0 = 0 and v0 · Λ(y) > 0. Since for t > 0, tv0 ≥ 0 and

D∗(tv0) = 0 ≤ f , we have

sup{v · Λ(y), v ≥ 0, D∗v ≤ f} ≥ sup
t>0

tv0 · Λ(y) = +∞ = R(y).

Assume now that Λ(y) is feasible, then the admissible set in the right-hand side of (15)

is nonempty. We claim that the infimum in (15) is a minimum: if Un is a minimizing

sequence, it is nonnegative and f · Un is bounded from above and since f > 0 this

implies that Un is bounded, and hence has a subsequence which converges to a solution

of the minimization problem in (15). Now we can invoke the duality Theorem for linear

programming (see e.g. Theorem 6.5 in Carlier (2022)): if the linear minimization problem

in (15) admits a solution, so does its dual problem which is exactly the linear maximization
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problem in (17) and the values of both problems agree.

The informational rent is thus the composition of the support function σK of the

feasible set K of the dual problem by the “mimicking” functions Λij which represent the

gain of agent i when he mimicks agent j. Note that σK only depends on the distribution

of the agent types {fi}, not on the economic fundamentals of the problem. Moreover

σK(Λ) is infinite iff there is a cycle on which the sum of the Λ is positive.

When the Single Crossing Condition holds, the binding IC constraints are always the

local downward constraints (independently of the assignment) and the support function

has a simple linear expression:

σK(Λ) = λ
∑
i

(1− Fi)Λi+1,i,

where Fi =
∑

j<i fj. However in the multidimensional case, the sup in the definition

of the support function is not always attained for the same vector v when we consider

different assignments y = (y1, ..., yN) ∈ Rd×N . For these assignments, the rent R(y) must

be written as the sup of two or more affine mappings and is therefore not differentiable.

4.3 Maxmin reformulation, optimality conditions

Using (18) and Proposition 3, we will establish that the initial screening problem (1)-(2)-

(3) is equivalent to

max
y∈Rd×N

S(y)− σK(Λ(y)). (19)

By definition of σK , this rewrites in maxmin form

max
y

min
v∈K

S(y)− v · Λ(y). (20)

Formally we have:

Proposition 4 (y, U) solves (1)-(2)-(3) if and only if y solves (19) and

σK(Λ(y)) = λ
∑
i

fiU i, DU ≥ Λ(y), U ≥ 0.

Note also that one can recover the optimal U from an optimal y using Proposition 2.

Indeed, if y solves (19) (so that Λ(y) is feasible) and U is the smallest nonnegative fixed

point of TΛ(y) (obtained as in Proposition 2) then (y, U) solves (1)-(2)-(3).

Now observe that the KKT conditions (10)-(11) imply that

D∗v ≤ λfand v ≥ 0 i.e. v ∈ K
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and

λR(y) ≤ λf · U = D∗v · U = v ·DU = v · Λ(y) ≤ σK(Λ(y)) = λR(y)

which, thanks to Proposition 3, yields

σK(Λ(y)) = v · Λ(y).

We can therefore reformulate the necessary conditions (10)-(11) for the initial formula-

tion (1)-(2)-(3) in terms of conditions in the variables y and v (multipliers for the IC

constraints) instead of y and U :

Proposition 5 Assume that (y, U) solves (1)-(2)-(3) and the IC constraints are qualified

(see (9)) at (y, U). Then, there exists v ∈ K such that

σK(Λ(y)) = v · Λ(y), (21)

and

fj∇Sj(yj) =
∑
i

vij∇Λij(yj). (22)

In terms of sufficient conditions, we have:

Proposition 6 Assume (y, v) ∈ Rd×N ×K satisfy conditions (21)-(22) of Proposition 5

and that U is the smallest nonnegative fixed point of TΛ(y) (see Proposition 2). Then,

1. if y is a local (resp. global) maximizer of y 7→ S(y) − v · Λ(y), it is a local (resp.

global) solution of (19) that is (y, U) is a local (global) solution of (1)-(2)-(3),

2. if ∑
j

(fjD
2S(yj)−

∑
ij

vijD
2Λij(yj))(hj, hj) < 0

for every nonzero h ∈ Rd×N such that there exist ui such that

∇Λij(yj) · hj = ui − uj when (i, j) ∈ A and vij > 0

and

∇Λij(yj) · hj ≤ ui − uj when (i, j) ∈ A and vij = 0

where A is the set of binding incentive compatibility constraints at (y, U), then y is

a local solution of (19).

Proof. 1. Follows from S(y)−σK(Λ(y)) ≤ S(y)−v ·Λ(y) with an equality for y = y. 2. Is

a (local) sufficient second-order condition which can be found in Chapter 3 ((Proposition

3.3.2 and its refined version in Exercise 3.3.7) of Bertsekas (2009)).

We conclude this section with the following remark:
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Remark 2 If S is concave differentiable and Λ is affine, S − σK ◦ Λ is concave so con-

ditions (21)-(22) are in fact necessary and sufficient (global) optimality conditions for

problem (19).

5 The Algorithm

We now describe a proximal primal-dual algorithm to find a pair (y, v) ∈ Rd×N ×K which

solves the optimality conditions (21)-(22). We assume that S is concave and differentiable,

and that Λ is smooth. We start with the case in which Λ is linear. Then the algorithm

coincides with that proposed by Chambolle and Pock (2011).5

5.1 On proximal methods

Before describing the algorithm, let us recall some concepts from convex analysis, with

the aim of giving some insights on proximal methods to the unfamiliar reader. Let φ :

Rm → R ∪ {+∞} be a convex, lower semi continuous function which is not identically

+∞. Given x ∈ Rm, the subdifferential of φ at x, ∂φ(x) is defined by

∂φ(x) := {p ∈ Rm : φ(z)− φ(x) ≥ p · (z − x), ∀z ∈ Rm},

hence x minimizes φ if and only if 0 ∈ ∂φ(x) (which in the event φ is differentiable at x

reduces to the standard first-order condition 0 = ∇φ(x)). The proximal operator of φ,

was introduced in Moreau (1965) and is given by

proxφ(x) := argmin
z∈Rm

{1
2
|z − x|2 + φ(z)}, ∀x ∈ Rm.

The map x ∈ Rm 7→ proxφ(x) is single-valued and one-Lipschitz (see Moreau (1965)) and

z = proxφ(x) ⇐⇒ x ∈ z + ∂φ(z).

In particular

x minimizes φ ⇐⇒ x ∈ x+ ∂φ(x) ⇐⇒ x = proxφ(x).

So minimizing φ is equivalent to finding a fixed point of proxφ (or proxτφ with τ > 0).

This is the basic idea behind the proximal point algorithm

xk+1 = proxφ(xk)

5It is worth recalling, especially in this special issue, that the algorithm of Chambolle and Pock (2011)
is itself an extension of the classical Arrow-Hurwicz algorithm (Arrow et al. (1958)).
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introduced in Martinet (1972). This algorithm is well-known to converge to a minimizer

provided such a minimizer exists, see Rockafellar (1976). The proximal point algorithm

has several appealing properties, not only because it allows for nonsmooth objective φ but

also because it satisfies by construction the inequality φ(xk+1) +
1
2
|xk+1 − xk|2 ≤ φ(xk)

which ensures φ decreases along its iterates. Of course, to use proximal methods in

practice, one should be able to compute proxφ efficiently. We end this paragraph by a

simple example (which will be useful in our setting). If C is a nonempty closed and convex

subset of Rm, its characteristic function χC :

χC(x) :=

0 if x ∈ C

+∞ otherwise

is lower semi continuous and convex. Its proximal operator proxχC
coincides with the

projection (closest point map) projC onto C.

5.2 The linear case

If the utilities bi are linear i.e of the form

bi(y) = θi · y

where θi ∈ Rd is the constant marginal utility of agent i (e.g. their willingness to pay for

quality), Λ is the linear map

Λij(y) := (θi − θj) · y,

defined in (2).6 The problem (19) is a concave maximization problem equivalent to finding

(y, v) ∈ Rd×N × K which solve for the optimality conditions (21)-(22). For given step

sizes τ > 0 and σ > 0 , the Chambolle-Pock algorithm proposes the following iterations:

yk+1 = prox−τS(yk − τΛ∗(vk)), (23)

ỹk+1 = 2yk+1 − yk, (24)

vk+1 = projK(vk + σΛ(ỹk+1)). (25)

Theorem 1 from Chambolle and Pock (2011) (also see He and Yuan (2012) for another

proof) guarantees that the iterates above converge to a solution of the system (21)-(22)

if τ > 0, σ > 0 satisfy τσ∥Λ∥2 < 1 where

∥Λ∥2 := sup
y ̸=0

∥Λ(y)∥2

∥y∥2
≤ max

i

∑
j

|θi − θj|2.

6We denote by Λ∗ its adjoint. This is defined so that if v is a N ×N matrix, Λ∗v ∈ RN is given by
(Λ∗v)j =

∑
i(θi − θj)vij .
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We can therefore use this algorithm to solve the linear version of the general multidi-

mensional principal-agent problem.

5.3 The General Case

When Λ is nonlinear, it is possible to use the linearization of primal updates7 which leads

to the algorithm proposed and analyzed by Valkonen (2014):

yk+1 = prox−τS(yk − τ(Λ′(yk))
∗vk), (26)

ỹk+1 = 2yk+1 − yk, (27)

vk+1 = projK(vk + σΛ(ỹk+1)). (28)

Note that if these iterates converge to some y, v one should have

y = prox−τS(y − τ(Λ′(y))∗v) i.e. ∇S(y) = Λ′(y)∗v

and

v = projK(v + σΛ(y)) i.e. v ∈ K, and σK(Λ(y)) = v · Λ(y)).

In other words, the pair (y, v) satisfies the first-order conditions (21)-(22) from Proposition

5. The (local) convergence analysis of the above algorithm to a solution of (21)-(22) is

rather involved and can be found under various technical assumptions8 in Valkonen (2014),

see also the very recent references Valkonen (2023) and Gao and Zhang (2023) (where a

shorter local convergence proof can be found, for a slightly different algorithm where the

linearization of the nonlinear map Λ is used at the level of the updates (28) for v instead

of the updates (26) for y).

Once again we have converted the multidimensional screening problem into a form

which can be tackled using a recently developed algorithm. Of course, the steps of the

above algorithm should be tractable enough to make the algorithm effective. We explain

in the Appendix how the proximal steps (23) (or (26)) and (24) (or (27)) can be handled

in practice.

6 Illustration 1: the Multiproduct Monopolist

In this section we apply our algorithm to the multiproduct monopolist problem described

in Section 2.1. We suppose that the monopolist produces a product whose quality or

type can be described by two characteristics y ∈ R2 with components y1, y2 capturing the

7Λ′(y) denotes the derivative of Λ at y and Λ′(y)∗ denotes its adjoint.
8Among these assumptions is the requirement-as for the original Chambolle-Pock algorithm-that the

steps τ and σ are small enough so that τσM2 < 1 with M a bound on the Lipschitz constant of DΛ.
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quality of each characteristic. The marginal cost of producing a product with quality y

is given by a quadratic function

C(y) :=
1

2

(
y21 + y22

)
. (29)

The monopolist serves a population of consumers who are characterised by a type vector

θ ∈ R2. The components of the type vector capture the willingness to pay for each

characteristic. The total willingness to pay of type θ for a good with characteristics y is

therefore the scalar product θ ·y. The monopolist’s first best would choose an assignment

of a given product type for each consumer which maximised the surplus created for each

client and extracted that surplus in the price charged. Hence the first best would be for

a client of type θ to receive a product with characteristics y = θ.

In our algorithm we suppose that consumers are uniformly distributed on an N ×N

grid supported on the square [1, 2]2. In Figure 1 we solve two versions of this problem, a

large version in which N2 = 2, 500 individual consumer types are modelled, and a smaller

version with N2 = 25 individual types which allows the binding incentive compatibility

constraints to be studied.

Panel (a) of Figure 1 demonstrates how the monopolist optimally distorts her product

range so as to maximise her profit. Recall that the first best has the product a type θ

receives equal to her type. Under the asymmetric information constraint the ‘no distortion

at the top’ result which holds in the one-dimensional case is almost true for types who have

the highest willingness to pay for at least one of the product characteristics, and holds

exactly for the clients with the highest willingness to pay on both dimensions. It is the

South West tail of the clients who find themselves with the most distorted assignments.

These clients form a Stingray’s tail which is a typical shape in these problems. The client

of type (1, 1) who has the lowest willingness to pay is optimally not served at all, and

clients with low willingness to pay have their product significantly distorted towards lower

quality on both dimensions. There is also bunching so that multiple types of low-valuation

clients are served with the same product.

These two features – the Stingray’s tail and bunching – are more clearly seen in the

(less busy) 5× 5 example in panels (b1) and (b2) of Figure 1. The Stingray’s tail is dis-

played in Panel (b1) where the South West clients with the lowest valuations have their

products distorted downwards. The bunching can be seen from Panel (b2) which depicts

that in the South West corner of the support of client types the binding incentive com-

patibility constraints are not just in the local downward and leftward direction. Instead

three, or sometimes four IC constraints become simultaneously binding (as evidenced by

the multiple arrows depicting binding IC constraints). This is because these types are op-

timally served the same product characteristics, or are indifferent between two distorted

products. The green spots in Panel (b2) further shows that the rents of the bottom six
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client types are fully extracted.

Panel (a)

Panel (b1) Panel (b2)

Figure 1: Solution to the Multidimensional Monopolist Problem
Notes: Panel (a) depicts the optimal product mix for a monopolist serving 2, 500 = 50 × 50 consumers

– the Stingray’s tail is evident. Panel (b1) depicts the optimal product mix with 25 = 5× 5 consumers.

Panel (b2) depicts the binding incentive compatibility (IC) and individual rationality (IR) constraints

for the 5× 5 case at the optimal assignment of products to clients. Clients are supported on [1, 2]2 and

production costs are given in (29). Code for the simulation algorithm is available at https://github.

com/x-dupuis/screening-algo.
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7 Illustration 2: Joint Taxation of Labour and Sav-

ings Incomes

In this section we apply our algorithm to a second canonical problem in economics: op-

timal taxation when citizens differ in more than one dimension. This problem was intro-

duced in section 2.2. To study this tax setting the social planner’s objective function was

defined in (6) and the surplus available to citizens was given in (7). In this formulation we

allow citizens to be differentiated on two dimensions; the type of individual i is a couple

(ei, xi). Endowments ei are assumed to be distributed uniformly on a regular grid on

[1, emax]. Labour disutilities xi are distributed uniformly on a regular grid on [0, 1]. We

set the competitive wage at w = 1 so that the utility of full-time work is 1− xi > 0. The

utility of consumption at date 1 is

u(C1) :=
1

η

(
1− e−ηC1

)
,

with η = 1. Period one consumption is e− s while period two consumption is the sum of

investment returns Rs and labour income. The return on savings is R and the Rawlsian

weight is λ. With these specifications, the first best allocation, obtained when types are

publicly observable, is characterized by l = 1 for all (everyone participates in the labor

force) as labour contributes positively to each citizen’s surplus. Further, the first best

allocation would result in identical consumption at date 1 such that : C1 = ln 1
R

for

all. Such an allocation, in the presence of full information, would be implemented by

personalized lump-sum taxes that do not depend on the labour or savings decisions of the

agents.

When x is the same for all agents, which only differ in e, the second best allocation

can be implemented by a savings tax T (s). The indirect utility of an agent of type e is

denoted by U∗(e) + (w − x)l where

U∗(e) = max
s

u(e− s) +Rs− T (s).

Note that the marginal tax rates are such that

T ′(s(e)) = R− u′(e− s(e)), (30)

where s(e) denotes the savings of agent e in the second best allocation. The envelope

theorem then implies

U∗′(e) = u′(e− s(e)) > 0. (31)

The economic question we want to investigate is whether it is optimal to tax the savings

of employed people at a higher or lower rate than unemployed people in the general case

20



where both e and x are heterogenous and privately observable. Assuming for simplicity

that l can only take the values 0 or 1, the principal will offer a menu of tax schedules

(Tl(s), l = 0, 1), giving rise to an indirect utility function

max(U∗
0 (e), U

∗
1 (e) + w − x).

The critical value of x above which an agent of type (e, x) decides not to work is thus

x∗(e) = w + U∗
1 (e)− U∗

0 (e). (32)

This critical value is increasing in the citizen’s endowment e if and only if U∗
1
′(e) > U∗

0
′(e),

which arises if and only if the marginal tax rates are lower for employed rather than

unemployed agents. Using (30) and (31) we see that we can establish whether the tax

rates on savings is affected by employment status by comparing the marginal utility of

consumption across differing endowments.

Panel (a1) Panel (a2)

Figure 2: Solution to the multidimensional tax problem
Panel (a1) depicts the work decision citizens make in response to the optimal tax scheme. Panel (a2)

depicts the marginal tax rate on savings given in (30). The simulation sets λ = 1/2, R = 1, η = 1, and

citizens are modelled as taking one of 400 = 20×20 types. Code for the simulation algorithm is available

at https://github.com/x-dupuis/screening-algo.

We solve for the optimal tax in a 20× 20 example in Figure 2. Panel (a1) of Figure 2

depicts the citizen’s labour decision when faced with the optimal tax scheme implemented

by the social planner. We see that the labour force participation decision optimally

depends on both the citizen’s disutility of labour and their initial endowment. Panel (a1)

shows us that the critical point at which citizens swap from not-working to working,
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x∗(e) is increasing in the citizen’s endowment. This shows that optimality requires a

tax on savings, and further that this tax depends upon the citizen’s disutility of labour

(and therefore on their labour force decision). This is confirmed in Panel (a2) of Figure

2. Panel (a2) plots the marginal tax rate with respect to saving which is given in (30).

We see that the optimal savings tax depends upon the disutility of labour and so differs

depending on the citizen’s optimal labour force decision.

Our initial question was therefore whether the savings of employed people should be

taxed differently to those of the unemployed. From Panel (a1) of Figure 2 the unemployed

have the lowest endowments and the highest disutility of working. From Panel (a2) we

see that the marginal tax rate is highest for these people. So in our simple formulation a

form of no-distortion-at-the-top applies in which those with the largest endowment enjoy

zero marginal savings taxes, but for those with smaller endowments savings taxes at the

margin are larger, and the marginal tax rates are largest for those who do not supply

labour so as to create the maximal incentive to work and not just consume from one’s

initial endowment.

We hope our algorithm will allow these results to be expanded and refined in much

larger simulations making full use of the multidimensionality of the problem.

8 Conclusion

The objective of this paper is to make easily accessible to the research community an

efficient algorithm which allows one to solve any discrete, quasi-linear screening problem

of reasonable size. The two examples analyzed here are only illustrative and do not

have any pretense to realism. However, our hope is that this algorithm will be used by

specialists in the different topics that can be modelled as screening problems, including

of course taxation and multiproduct design and pricing. The power of our algorithm

makes it effective for large numbers of types, which allows one to approximate continuous

distributions closely. We also hope to extend it, in subsequent research, to non quasi-linear

environments.
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9 APPENDIX

9.1 A simple case where IC constraints are qualified

Lemma 2 If y splits into y = (x, z) and bi(y) = φi(x) + θiz with i ̸= j ⇒ θi ̸= θj then

(9) holds at any admissible (y, U).

Proof. Take ûi =
1
2
|θi|2, ŷi = (0, θi) and note that Dûij −∇Λij(yj)ŷj =

1
2
|θi − θj|2.

9.2 Feasibility of the proximal steps

Let us now explain how the proximal steps (23) (or (26)) and (24) (or (27)) can be handled

in practice.

9.2.1 Updates for the primal variables y

The proximal steps (23) (or (26)) involve the proximal operator of the convex and smooth

function −τS, that is given y0 ∈ Rd×N we have to solve

sup
y

S(y)− 1

2τ
|y − y0|2

but S(y) =
∑

i fiSi(yi) is a separable function so that this proximal steps can be split

into simple (strictly concave and smooth) optimization problems in dimension d only:

sup
yi

fiSi(yi)−
1

2τ
(yi − y0i )

2

which can be done by standard methods such as gradient ascent. Note that if Si is

quadratic (as in our Multiprodcut Monopolist illustration), this proximal step is in closed

form.

9.2.2 Updates for the multipliers: projecting onto K

Recall that K is the closed convex set of N ×N matrices,

K := {v ∈ RN×N , vii = 0, v ≥ 0, D∗v ≤ η} (33)

where η := λf . The projection ontoK step could be a serious bottleneck for the algorithm

if projecting onto K was costly. Our aim now is to explain how to project onto K

efficiently. Given w ∈ RN×N we thus wish to solve

inf
v∈K

|v − w|2 =
∑

1≤i,j≤N

(vij − wij)
2. (34)
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This is a quadratic problem with finitely many linear and inequality constraints. The

unique solution v of (34) is characterized by the following KKT conditions: there exist

µ ∈ RN×N
+ (multipliers for the nonnegativity constraints) and β ∈ RN (multipliers for the

constraints on D∗v) such that

v − w = µ−Dβ, µ ≥ 0, µ · v = 0, (35)

as well as

β ≥ 0, D∗v ≤ η, β · (D∗v − η) = 0, (36)

One can simply eliminate µ and simply rewrite (35) as v = v(β) depending only on β (we

insist here that β only has dimension N) with

v = (w −Dβ)+ i.e. vij(β) := max(wij − (βi − βj), 0) (37)

and we are left to find β in such a way that v(β) fulfills (36). At this point it is useful to

observe the following

Lemma 3 Define for every β ∈ RN

Φ(β) :=
1

2
|v(β)|2 = 1

2

∑
1≤i,j≤N

(wij − βi + βj)
2
+

then v solves (34) with K given by (33) if only if v = v(β) and β solves

inf
λ∈RN

+

Φ(β) + η · β (38)

Proof. Observe that Φ is convex and differentiable (it is even C1,1 i.e. has a Lipschitz

gradient) and

∇Φ(β) = −D∗v(β)

so β solves (38) if only if

D∗v(β) ≤ η, (η −D∗v(β)) · β = 0

which is (36).

So the good news is that projecting onto K consists in minimizing a smooth and

convex function on RN with only nonnegativity constraints (in (38)). One can therefore

use a (projected) gradient method and, what is even more important, use Nesterov’s

acceleration as follows.

Since ∇Φ(β) = −D∗v(β) and v is 1-Lipschitz (for the euclidean norm of RN), ∇Φ is
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M -Lipschitz with M := ∥D∗∥2 is the 2-operator norm9 of D∗. The standard projected

gradient method for (38), consists, given an initial guess β0, in iteratively setting

βk+1 = Π+

(
βk −

1

M
(η −D∗v(βk))

)
where Π+ just consists of taking componentwise the positive part. This is simple to imple-

ment but converges quite slowly that is the difference between the desired minimum and

the function to be minimized evaluated at βk is O(1/k). Nesterov’s acceleration (Nesterov

(1983), Beck and Teboulle (2009)) enables one to reach an error O(1/k2) with the same

computational cost just by choosing properly varying gradient steps tk by starting with

t0 = 0 and the recursion

tk+1 =
1 +

√
1 + 4t2k
2

.

Given an initial guess β0 = β0, Nesterov’s iterates, are then given by

βk+1 = Π+

(
βk −

1

M
(η −D∗v(βk))

)
(39)

and

βk+1 = βk+1 +

(
tk − 1

tk+1

)
(βk+1 − βk).

The error between the minimum and the cost computed at βk is O(1/k2) (see Beck and

Teboulle (2009)).

9i.e. ∥D∗∥2 is the square root of sup{
∑

i(D
∗v)2i :

∑
ij v

2
ij ≤ 1} which is also the largest eigenvalue of

DD∗.
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